Generalized Lyapunov Exponents of Homogeneous ...
Type de document :
Communication dans un congrès avec actes
Titre :
Generalized Lyapunov Exponents of Homogeneous Systems
Auteur(s) :
Polyakov, Andrey [Auteur]
Finite-time control and estimation for distributed systems [VALSE]
Zhuk, Sergiy [Auteur]
IBM Research - Ireland

Finite-time control and estimation for distributed systems [VALSE]
Zhuk, Sergiy [Auteur]
IBM Research - Ireland
Titre de la manifestation scientifique :
CDC 2019 - 58th IEEE Conference on Decision and Control
Ville :
Nice
Pays :
France
Date de début de la manifestation scientifique :
2019-12-11
Discipline(s) HAL :
Informatique [cs]/Automatique
Résumé en anglais : [en]
The paper deals the method of Lyapunov exponents for a class of a generalized homogeneous systems. Homogeneous systems may have some sup-exponential and super-exponential grows. In this case, the method of Lyapunov exponents ...
Lire la suite >The paper deals the method of Lyapunov exponents for a class of a generalized homogeneous systems. Homogeneous systems may have some sup-exponential and super-exponential grows. In this case, the method of Lyapunov exponents becomes non-informative, e.g. all Lyapunov exponents may equal to zero but the system is globally uniformly asymptotically stable. In this paper we propose an approach which allows us to analyze a behavior of such homogeneous systems by means of the method of Lyapunov exponents.Lire moins >
Lire la suite >The paper deals the method of Lyapunov exponents for a class of a generalized homogeneous systems. Homogeneous systems may have some sup-exponential and super-exponential grows. In this case, the method of Lyapunov exponents becomes non-informative, e.g. all Lyapunov exponents may equal to zero but the system is globally uniformly asymptotically stable. In this paper we propose an approach which allows us to analyze a behavior of such homogeneous systems by means of the method of Lyapunov exponents.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- https://hal.inria.fr/hal-02285137/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-02285137/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-02285137/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- main.pdf
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- main.pdf
- Accès libre
- Accéder au document