• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

CNN for Text-Based Multiple Choice Question ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Communication dans un congrès avec actes
Title :
CNN for Text-Based Multiple Choice Question Answering
Author(s) :
Chaturvedi, Akshay [Auteur]
Indian Statistical Institute [Kolkata]
Pandit, Onkar [Auteur]
Machine Learning in Information Networks [MAGNET]
Garain, Utpal [Auteur]
Indian Statistical Institute [Kolkata]
Conference title :
ACL 2018 - 56th Annual Meeting of the Association for Computational Linguistics
City :
Melbourne
Country :
Australie
Start date of the conference :
2018-07-15
Journal title :
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics
HAL domain(s) :
Informatique [cs]/Intelligence artificielle [cs.AI]
Informatique [cs]/Informatique et langage [cs.CL]
English abstract : [en]
The task of Question Answering is at the very core of machine comprehension. In this paper, we propose a Convolutional Neural Network (CNN) model for text-based multiple choice question answering where questions are based ...
Show more >
The task of Question Answering is at the very core of machine comprehension. In this paper, we propose a Convolutional Neural Network (CNN) model for text-based multiple choice question answering where questions are based on a particular article. Given an article and a multiple choice question, our model assigns a score to each question-option tuple and chooses the final option accordingly. We test our model on Textbook Question Answering (TQA) and SciQ dataset. Our model outperforms several LSTM-based baseline models on the two datasets.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-02265065/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-02265065/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-02265065/document
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017