Discretization of Homogeneous Systems Using ...
Type de document :
Article dans une revue scientifique: Article original
Titre :
Discretization of Homogeneous Systems Using Euler Method with a State-Dependent Step
Auteur(s) :
Efimov, Denis [Auteur]
Finite-time control and estimation for distributed systems [VALSE]
Polyakov, Andrey [Auteur]
Finite-time control and estimation for distributed systems [VALSE]
Aleksandrov, Alexander [Auteur]
Saint Petersburg University [SPBU]

Finite-time control and estimation for distributed systems [VALSE]
Polyakov, Andrey [Auteur]

Finite-time control and estimation for distributed systems [VALSE]
Aleksandrov, Alexander [Auteur]
Saint Petersburg University [SPBU]
Titre de la revue :
Automatica
Éditeur :
Elsevier
Date de publication :
2019
ISSN :
0005-1098
Mot(s)-clé(s) en anglais :
Discretization
Homogeneous systems
Euler method
Homogeneous systems
Euler method
Discipline(s) HAL :
Sciences de l'ingénieur [physics]/Automatique / Robotique
Résumé en anglais : [en]
Numeric approximations to the solutions of asymptotically stable homogeneous systems by Euler method, with a step of discretization scaled by the state norm, are investigated (for the explicit and implicit integration ...
Lire la suite >Numeric approximations to the solutions of asymptotically stable homogeneous systems by Euler method, with a step of discretization scaled by the state norm, are investigated (for the explicit and implicit integration schemes). It is proven that for a sufficiently small discretization step the convergence of the approximating solutions to zero can be guaranteed globally in a finite or a fixed time depending on the degree of homogeneity of the system, but in an infinite number of discretization iterations. The maximal admissible step can be estimated by analyzing the system properties on the sphere. It is shown that the absolute and relative errors of the discretizations are globally bounded functions, thus the approximations approaching the solutions with the step converging to zero. In addition, it is established that the proposed discretization approach preserves robustness with respect to exogenous perturbations. Efficiency of the designed discretization algorithms is demonstrated in simulations.Lire moins >
Lire la suite >Numeric approximations to the solutions of asymptotically stable homogeneous systems by Euler method, with a step of discretization scaled by the state norm, are investigated (for the explicit and implicit integration schemes). It is proven that for a sufficiently small discretization step the convergence of the approximating solutions to zero can be guaranteed globally in a finite or a fixed time depending on the degree of homogeneity of the system, but in an infinite number of discretization iterations. The maximal admissible step can be estimated by analyzing the system properties on the sphere. It is shown that the absolute and relative errors of the discretizations are globally bounded functions, thus the approximations approaching the solutions with the step converging to zero. In addition, it is established that the proposed discretization approach preserves robustness with respect to exogenous perturbations. Efficiency of the designed discretization algorithms is demonstrated in simulations.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Projet ANR :
Collections :
Source :
Fichiers
- https://hal.inria.fr/hal-02190206/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-02190206/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- Homo_Euler_J_final.pdf
- Accès libre
- Accéder au document
- Homo_Euler_J_final.pdf
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- Homo_Euler_J_final.pdf
- Accès libre
- Accéder au document