A Hybrid Metaheuristic Approach to a Real ...
Type de document :
Communication dans un congrès avec actes
DOI :
Titre :
A Hybrid Metaheuristic Approach to a Real World Employee Scheduling Problem
Auteur(s) :
Reid, Kenneth [Auteur]
University of Stirling
Li, Jingpeng [Auteur]
University of Stirling
Brownlee, Alexander E.I. [Auteur]
University of Stirling
Kern, Mathias [Auteur]
Veerapen, Nadarajen [Auteur]
Operational Research, Knowledge And Data [ORKAD]
Swan, Jerry [Auteur]
University of Stirling
Owusu, Gilbert [Auteur]
University of Stirling
Li, Jingpeng [Auteur]
University of Stirling
Brownlee, Alexander E.I. [Auteur]
University of Stirling
Kern, Mathias [Auteur]
Veerapen, Nadarajen [Auteur]
Operational Research, Knowledge And Data [ORKAD]
Swan, Jerry [Auteur]
University of Stirling
Owusu, Gilbert [Auteur]
Titre de la manifestation scientifique :
GECCO'19 (2019 Genetic and Evolutionary Computation Conference)
Organisateur(s) de la manifestation scientifique :
ACM
Ville :
Prague
Pays :
République tchèque
Date de début de la manifestation scientifique :
2019-07-13
Titre de l’ouvrage :
GECCO '19: Proceedings of the Genetic and Evolutionary Computation Conference
Titre de la revue :
Proceedings of the 2019 Genetic and Evolutionary Computation Conference
Date de publication :
2019-07
Mot(s)-clé(s) en anglais :
Evolutionary Ruin and Stochastic Recreate
Metaheuristics
Employee Scheduling
Variable Neighbourhood Search
Metaheuristics
Employee Scheduling
Variable Neighbourhood Search
Discipline(s) HAL :
Informatique [cs]/Intelligence artificielle [cs.AI]
Computer Science [cs]/Operations Research [math.OC]
Computer Science [cs]/Operations Research [math.OC]
Résumé en anglais : [en]
Employee scheduling problems are of critical importance to large businesses. These problems are hard to solve due to large numbers of conflicting constraints. While many approaches address a subset of these constraints, ...
Lire la suite >Employee scheduling problems are of critical importance to large businesses. These problems are hard to solve due to large numbers of conflicting constraints. While many approaches address a subset of these constraints, there is no single approach for simultaneously addressing all of them. We hybridise ‘Evolutionary Ruin & Stochastic Recreate’ and ‘Variable Neighbourhood Search’ metaheuristics to solve a real world instance of the employee scheduling problem to near optimality. We compare this with Simulated Annealing, exploring the algorithm configuration space using the irace software package to ensure fair comparison. The hybrid algorithm generates schedules that reduce unmet demand by over 28% compared to the baseline. All data used, where possible, is either directly from the real world engineer scheduling operation of around 25,000 employees, or synthesised from a related distribution where data is unavailable.Lire moins >
Lire la suite >Employee scheduling problems are of critical importance to large businesses. These problems are hard to solve due to large numbers of conflicting constraints. While many approaches address a subset of these constraints, there is no single approach for simultaneously addressing all of them. We hybridise ‘Evolutionary Ruin & Stochastic Recreate’ and ‘Variable Neighbourhood Search’ metaheuristics to solve a real world instance of the employee scheduling problem to near optimality. We compare this with Simulated Annealing, exploring the algorithm configuration space using the irace software package to ensure fair comparison. The hybrid algorithm generates schedules that reduce unmet demand by over 28% compared to the baseline. All data used, where possible, is either directly from the real world engineer scheduling operation of around 25,000 employees, or synthesised from a related distribution where data is unavailable.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- http://dspace.stir.ac.uk/bitstream/1893/29229/1/Paper__3___Author_Copy.pdf
- Accès libre
- Accéder au document
- Paper__3___Author_Copy.pdf
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- Paper__3___Author_Copy.pdf
- Accès libre
- Accéder au document