General parallel optimization without a metric
Type de document :
Communication dans un congrès avec actes
Titre :
General parallel optimization without a metric
Auteur(s) :
Shang, Xuedong [Auteur]
Sequential Learning [SEQUEL]
Kaufmann, Emilie [Auteur]
Sequential Learning [SEQUEL]
Centre National de la Recherche Scientifique [CNRS]
Valko, Michal [Auteur]
Sequential Learning [SEQUEL]
Sequential Learning [SEQUEL]
Kaufmann, Emilie [Auteur]

Sequential Learning [SEQUEL]
Centre National de la Recherche Scientifique [CNRS]
Valko, Michal [Auteur]

Sequential Learning [SEQUEL]
Titre de la manifestation scientifique :
Algorithmic Learning Theory
Ville :
Chicago
Pays :
Etats-Unis d'Amérique
Date de début de la manifestation scientifique :
2019
Date de publication :
2019
Mot(s)-clé(s) en anglais :
continuously-armed bandits
global optimization
black-box optimization
global optimization
black-box optimization
Discipline(s) HAL :
Statistiques [stat]/Machine Learning [stat.ML]
Résumé en anglais : [en]
Hierarchical bandits are an approach for global optimization of extremely irregular functions. This paper provides new elements regarding POO, an adaptive meta-algorithm that does not require the knowledge of local smoothness ...
Lire la suite >Hierarchical bandits are an approach for global optimization of extremely irregular functions. This paper provides new elements regarding POO, an adaptive meta-algorithm that does not require the knowledge of local smoothness of the target function. We first highlight the fact that the subroutine algorithm used in POO should have a small regret under the assumption of local smoothness with respect to the chosen partitioning, which is unknown if it is satisfied by the standard subroutine HOO. In this work, we establish such regret guarantee for HCT, which is another hierarchical optimistic optimization algorithm that needs to know the smoothness. This confirms the validity of POO. We show that POO can be used with HCT as a subroutine with a regret upper bound that matches the one of best-known algorithms using the knowledge of smoothness up to a √ log n factor. On top of that, we propose a general wrapper, called GPO, that can cope with algorithms that only have simple regret guarantees. Finally, we complement our findings with experiments on difficult functions.Lire moins >
Lire la suite >Hierarchical bandits are an approach for global optimization of extremely irregular functions. This paper provides new elements regarding POO, an adaptive meta-algorithm that does not require the knowledge of local smoothness of the target function. We first highlight the fact that the subroutine algorithm used in POO should have a small regret under the assumption of local smoothness with respect to the chosen partitioning, which is unknown if it is satisfied by the standard subroutine HOO. In this work, we establish such regret guarantee for HCT, which is another hierarchical optimistic optimization algorithm that needs to know the smoothness. This confirms the validity of POO. We show that POO can be used with HCT as a subroutine with a regret upper bound that matches the one of best-known algorithms using the knowledge of smoothness up to a √ log n factor. On top of that, we propose a general wrapper, called GPO, that can cope with algorithms that only have simple regret guarantees. Finally, we complement our findings with experiments on difficult functions.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Projet ANR :
Collections :
Source :
Fichiers
- https://hal.inria.fr/hal-02047225v2/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-02047225v2/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-02047225v2/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- shang2019general.pdf
- Accès libre
- Accéder au document