The Rank Pricing Problem: models and ...
Type de document :
Article dans une revue scientifique
Titre :
The Rank Pricing Problem: models and branch-and-cut algorithms
Auteur(s) :
Calvete, Herminia [Auteur]
University of Zaragoza - Universidad de Zaragoza [Zaragoza]
Domínguez, Concepción [Auteur]
Integrated Optimization with Complex Structure [INOCS]
Universidad de Murcia
Galé, Carmen [Auteur]
University of Zaragoza - Universidad de Zaragoza [Zaragoza]
Labbé, Martine [Auteur]
Integrated Optimization with Complex Structure [INOCS]
Graphes et Optimisation Mathématique [Bruxelles] [GOM]
Marín, Alfredo [Auteur]
Departamento de Estadística e Investigación Operativa, Facultad de Matematicas
University of Zaragoza - Universidad de Zaragoza [Zaragoza]
Domínguez, Concepción [Auteur]
Integrated Optimization with Complex Structure [INOCS]
Universidad de Murcia
Galé, Carmen [Auteur]
University of Zaragoza - Universidad de Zaragoza [Zaragoza]
Labbé, Martine [Auteur]
Integrated Optimization with Complex Structure [INOCS]
Graphes et Optimisation Mathématique [Bruxelles] [GOM]
Marín, Alfredo [Auteur]
Departamento de Estadística e Investigación Operativa, Facultad de Matematicas
Titre de la revue :
Computers and Operations Research
Pagination :
12-31
Éditeur :
Elsevier
Date de publication :
2019-05-01
ISSN :
0305-0548
Mot(s)-clé(s) en anglais :
Bilevel Programming
Rank Pricing Problem
Integer Programming
Set Packing
Pricing Problems
Rank Pricing Problem
Integer Programming
Set Packing
Pricing Problems
Discipline(s) HAL :
Mathématiques [math]/Combinatoire [math.CO]
Informatique [cs]/Recherche opérationnelle [cs.RO]
Informatique [cs]/Recherche opérationnelle [cs.RO]
Résumé en anglais : [en]
One of the main concerns in management and economic planning is to sell the right product to the right customer for the right price. Companies in retail and manufacturing employ pricing strategies to maximize their revenues. ...
Lire la suite >One of the main concerns in management and economic planning is to sell the right product to the right customer for the right price. Companies in retail and manufacturing employ pricing strategies to maximize their revenues. The Rank Pricing Problem considers a unit-demand model with unlimited supply and uniform budgets in which customers have a rank-buying behavior. Under these assumptions, the problem is first analyzed from the perspective of bilevel pricing models and formulated as a non linear bilevel program with multiple independent followers. We also present a direct non linear single level formulation bearing in mind the aim of the problem. Two different linearizations of the models are carried out and two families of valid inequalities are obtained which, embedded in the formulations by implementing a branch-and-cut algorithm, allow us to tighten the upper bound given by the linear relaxation of the models. We also study the polyhedral structure of the models, taking advantage of the fact that a subset of their constraints constitutes a special case of the Set Packing Problem, and characterize all the clique facets. Besides, we develop a preprocessing procedure to reduce the size of the instances. Finally, we show the efficiency of the formulations, the branch-and-cut algorithms and the preprocessing through extensive computational experiments.Lire moins >
Lire la suite >One of the main concerns in management and economic planning is to sell the right product to the right customer for the right price. Companies in retail and manufacturing employ pricing strategies to maximize their revenues. The Rank Pricing Problem considers a unit-demand model with unlimited supply and uniform budgets in which customers have a rank-buying behavior. Under these assumptions, the problem is first analyzed from the perspective of bilevel pricing models and formulated as a non linear bilevel program with multiple independent followers. We also present a direct non linear single level formulation bearing in mind the aim of the problem. Two different linearizations of the models are carried out and two families of valid inequalities are obtained which, embedded in the formulations by implementing a branch-and-cut algorithm, allow us to tighten the upper bound given by the linear relaxation of the models. We also study the polyhedral structure of the models, taking advantage of the fact that a subset of their constraints constitutes a special case of the Set Packing Problem, and characterize all the clique facets. Besides, we develop a preprocessing procedure to reduce the size of the instances. Finally, we show the efficiency of the formulations, the branch-and-cut algorithms and the preprocessing through extensive computational experiments.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- https://hal.inria.fr/hal-01782958v3/document
- Accès libre
- Accéder au document
- http://zaguan.unizar.es/record/86445/files/texto_completo.pdf
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-01782958v3/document
- Accès libre
- Accéder au document
- http://zaguan.unizar.es/record/86445/files/texto_completo.pdf
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-01782958v3/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- RPP_dic_2018.pdf
- Accès libre
- Accéder au document
- texto_completo.pdf
- Accès libre
- Accéder au document