• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

CO-OCCURRENCES OF ADAPTED FEATURES FOR ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Partie d'ouvrage
DOI :
10.1007/1-4020-4179-9_2
Title :
CO-OCCURRENCES OF ADAPTED FEATURES FOR OBJECT RECOGNITION ACROSS ILLUMINATION CHANGES
Author(s) :
Muselet, Damien [Auteur]
Macaire, Ludovic [Auteur] refId
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
LAGIS-SI
Postaire, Jack-Gérard [Auteur]
Scientific editor(s) :
Wojciechowski
K.and Smolka
B.and Palus
H.and Kozera
R.S.and Skarbek
W.and Noakes
L.
Book title :
Computer Vision and Graphics: International Conference, ICCVG 2004, Warsaw, Poland, September 2004, Proceedings
Publisher :
Springer Netherlands
Publication date :
2006
ISBN :
978-1-4020-4179-2
HAL domain(s) :
Informatique [cs]/Vision par ordinateur et reconnaissance de formes [cs.CV]
English abstract : [en]
In this paper, we propose an original approach which allows to recognize objects in color images acquired under uncontrolled illumination conditions. For each pair of images to compare, the scheme consists in evaluating ...
Show more >
In this paper, we propose an original approach which allows to recognize objects in color images acquired under uncontrolled illumination conditions. For each pair of images to compare, the scheme consists in evaluating specific color features adapted to this pair. These adapted features are evaluated so that the distributions of adapted colors in the two images are similar only when they contain the same object. Then we propose to analyze the spatial co-occurrences between the adapted features to compute the image indices. Experimental tests on a public image database show the efficiency of this approach in the context of object recognition across illumination changes.Show less >
Language :
Anglais
Audience :
Internationale
Popular science :
Non
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Université de Lille

Mentions légales
Université de Lille © 2017