A Distributed and Parallel Asynchronous ...
Type de document :
Compte-rendu et recension critique d'ouvrage
Titre :
A Distributed and Parallel Asynchronous Unite and Conquer Method to Solve Large Scale Non-Hermitian Linear Systems with Multiple Right-hand Sides
Auteur(s) :
Wu, Xinzhe [Auteur]
Centre National de la Recherche Scientifique [CNRS]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Maison de la Simulation [MDLS]
Petiton, Serge [Auteur]
Centre National de la Recherche Scientifique [CNRS]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Maison de la Simulation [MDLS]
Centre National de la Recherche Scientifique [CNRS]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Maison de la Simulation [MDLS]
Petiton, Serge [Auteur]
Centre National de la Recherche Scientifique [CNRS]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Maison de la Simulation [MDLS]
Titre de la revue :
Parallel Computing
Pagination :
102551
Éditeur :
Elsevier
Date de publication :
2019
ISSN :
0167-8191
Mot(s)-clé(s) en anglais :
Linear systems
Krylov subspace methods
unite and conquer
multiple right-hand sides
asynchronous communication
Krylov subspace methods
unite and conquer
multiple right-hand sides
asynchronous communication
Discipline(s) HAL :
Informatique [cs]/Calcul parallèle, distribué et partagé [cs.DC]
Informatique [cs]/Analyse numérique [cs.NA]
Informatique [cs]/Analyse numérique [cs.NA]
Résumé en anglais : [en]
Many problems in the field of science and engineering often require to solve simultaneously large-scale non-Hermitian sparse linear systems with multiple right-hand sides (RHSs). Efficiently solving such problems on ...
Lire la suite >Many problems in the field of science and engineering often require to solve simultaneously large-scale non-Hermitian sparse linear systems with multiple right-hand sides (RHSs). Efficiently solving such problems on extreme-scale platforms requires the minimization of global communications, reduction of synchronization points and promotion of asynchronous communications. We develop an extension of the Unite and Conquer GMRES/LS-ERAM (UCGLE) method [1] by combining it with Block GMRES method to solve non-Hermitian linear systems with multiple RHSs. UCGLE is a hybrid method consisting of three computing algorithms with asynchronous communication that allow the use of approximate eigenvalues to accelerate to solve of linear systems and to improve their fault tolerance. In this paper, the variant of UCGLE with novel components and manager engine implementations is introduced. This engine is capable of allocating multiple Block GMRES at the same time, each Block GMRES solving the linear systems with a subset of RHSs and accelerating the convergence using the eigenvalues approximated by other eigensolvers. Dividing the entire linear system with multiple RHSs into subsets and solving them simultaneously with different allocated linear solvers allow localizing calculations, reducing global communication, and improving parallel performance. Meanwhile, the asynchronous preconditioning using eigenvalues is able to speed up the convergence and improve the fault tolerance and reusability. Numerical experiments using different test matrices on supercomputer ROMEO indicate that the proposed method achieves a substantial decrease in both computation time and iterative steps with good scaling performance.Lire moins >
Lire la suite >Many problems in the field of science and engineering often require to solve simultaneously large-scale non-Hermitian sparse linear systems with multiple right-hand sides (RHSs). Efficiently solving such problems on extreme-scale platforms requires the minimization of global communications, reduction of synchronization points and promotion of asynchronous communications. We develop an extension of the Unite and Conquer GMRES/LS-ERAM (UCGLE) method [1] by combining it with Block GMRES method to solve non-Hermitian linear systems with multiple RHSs. UCGLE is a hybrid method consisting of three computing algorithms with asynchronous communication that allow the use of approximate eigenvalues to accelerate to solve of linear systems and to improve their fault tolerance. In this paper, the variant of UCGLE with novel components and manager engine implementations is introduced. This engine is capable of allocating multiple Block GMRES at the same time, each Block GMRES solving the linear systems with a subset of RHSs and accelerating the convergence using the eigenvalues approximated by other eigensolvers. Dividing the entire linear system with multiple RHSs into subsets and solving them simultaneously with different allocated linear solvers allow localizing calculations, reducing global communication, and improving parallel performance. Meanwhile, the asynchronous preconditioning using eigenvalues is able to speed up the convergence and improve the fault tolerance and reusability. Numerical experiments using different test matrices on supercomputer ROMEO indicate that the proposed method achieves a substantial decrease in both computation time and iterative steps with good scaling performance.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Collections :
Source :
Fichiers
- https://hal.archives-ouvertes.fr/hal-01918741/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-01918741/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-01918741/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- parallel_computing_Xinzhe_Wu.pdf
- Accès libre
- Accéder au document
- parallel_computing_Xinzhe_Wu.pdf
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- parallel_computing_Xinzhe_Wu.pdf
- Accès libre
- Accéder au document