Intelligent pixels of interest selection ...
Type de document :
Compte-rendu et recension critique d'ouvrage
Titre :
Intelligent pixels of interest selection with application to facial expression recognition using multilayer perceptron
Auteur(s) :
Danisman, Taner [Auteur]
FOX MIIRE [LIFL]
Bilasco, Ioan Marius [Auteur]
FOX MIIRE [LIFL]
Laboratoire d'Informatique Fondamentale de Lille [LIFL]
Université de Lille, Sciences et Technologies
Martinet, Jean [Auteur]
FOX MIIRE [LIFL]
Laboratoire d'Informatique Fondamentale de Lille [LIFL]
Djeraba, Chaabane [Auteur]
no affiliation
FOX MIIRE [LIFL]
Laboratoire d'Informatique Fondamentale de Lille [LIFL]
FOX MIIRE [LIFL]
Bilasco, Ioan Marius [Auteur]
FOX MIIRE [LIFL]
Laboratoire d'Informatique Fondamentale de Lille [LIFL]
Université de Lille, Sciences et Technologies
Martinet, Jean [Auteur]
FOX MIIRE [LIFL]
Laboratoire d'Informatique Fondamentale de Lille [LIFL]
Djeraba, Chaabane [Auteur]
no affiliation
FOX MIIRE [LIFL]
Laboratoire d'Informatique Fondamentale de Lille [LIFL]
Titre de la revue :
Signal Processing
Special issue on Machine Learning in Intelligent Image Processing
Special issue on Machine Learning in Intelligent Image Processing
Pagination :
1547-1556
Éditeur :
Elsevier
Date de publication :
2013
ISSN :
0165-1684
Mot(s)-clé(s) en anglais :
Facial expression recognition
multi layer perceptron
feature selection * Corresponding author
multi layer perceptron
feature selection * Corresponding author
Discipline(s) HAL :
Informatique [cs]
Informatique [cs]/Intelligence artificielle [cs.AI]
Informatique [cs]/Vision par ordinateur et reconnaissance de formes [cs.CV]
Informatique [cs]/Intelligence artificielle [cs.AI]
Informatique [cs]/Vision par ordinateur et reconnaissance de formes [cs.CV]
Résumé en anglais : [en]
This paper presents an automatic way to discover pixels in a face image that improves the facial expression recognition results. Main contribution of our study is to provide a practical method to improve classification ...
Lire la suite >This paper presents an automatic way to discover pixels in a face image that improves the facial expression recognition results. Main contribution of our study is to provide a practical method to improve classification performance of classifiers by selecting best pixels of interest. Our method exhaustively searches for the best and worst feature window position from a set of face images among all possible combinations using MLP. Then, it creates a non-rectangular emotion mask for feature selection in supervised facial expression recognition problem. It eliminates irrelevant data and improves the classification performance using backward feature elimination. Experimental studies on GENKI, JAFFE and FERET databases showed that the proposed system improves the classification results by selecting the best pixels of interest.Lire moins >
Lire la suite >This paper presents an automatic way to discover pixels in a face image that improves the facial expression recognition results. Main contribution of our study is to provide a practical method to improve classification performance of classifiers by selecting best pixels of interest. Our method exhaustively searches for the best and worst feature window position from a set of face images among all possible combinations using MLP. Then, it creates a non-rectangular emotion mask for feature selection in supervised facial expression recognition problem. It eliminates irrelevant data and improves the classification performance using backward feature elimination. Experimental studies on GENKI, JAFFE and FERET databases showed that the proposed system improves the classification results by selecting the best pixels of interest.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Collections :
Source :
Fichiers
- https://hal.inria.fr/hal-00804171/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- Intelligent%20Pixels%20of%20Interest%20Selection%20with%20Application%20to%20Facial%20Expression%20Recognition%20using%20Multilayer%20Perceptron.pdf
- Accès libre
- Accéder au document