HyTexiLa: High resolution visible and near ...
Type de document :
Compte-rendu et recension critique d'ouvrage
DOI :
Titre :
HyTexiLa: High resolution visible and near infrared hyperspectral texture images
Auteur(s) :
Khan, Haris Ahmad [Auteur]
Laboratoire d'Electronique, d'Informatique et d'Image [EA 7508] [Le2i]
The Norwegian Colour and Visual Computing Laboratory
Mihoubi, Sofiane [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Mathon, Benjamin [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Thomas, Jean-Baptiste [Auteur]
Laboratoire d'Electronique, d'Informatique et d'Image [EA 7508] [Le2i]
The Norwegian Colour and Visual Computing Laboratory
Hardeberg, Jon Yngve [Auteur]
The Norwegian Colour and Visual Computing Laboratory
Laboratoire d'Electronique, d'Informatique et d'Image [EA 7508] [Le2i]
The Norwegian Colour and Visual Computing Laboratory
Mihoubi, Sofiane [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Mathon, Benjamin [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Thomas, Jean-Baptiste [Auteur]
Laboratoire d'Electronique, d'Informatique et d'Image [EA 7508] [Le2i]
The Norwegian Colour and Visual Computing Laboratory
Hardeberg, Jon Yngve [Auteur]
The Norwegian Colour and Visual Computing Laboratory
Titre de la revue :
Sensors
Pagination :
2045
Éditeur :
MDPI
Date de publication :
2018-06-26
ISSN :
1424-8220
Discipline(s) HAL :
Informatique [cs]/Traitement des images [eess.IV]
Résumé en anglais : [en]
We present a dataset of close range hyperspectral images of materials that span the visible and near infrared spectrums: HyTexiLa (Hyperspectral Texture images acquired in Laboratory). The data is intended to provide high ...
Lire la suite >We present a dataset of close range hyperspectral images of materials that span the visible and near infrared spectrums: HyTexiLa (Hyperspectral Texture images acquired in Laboratory). The data is intended to provide high spectral and spatial resolution reflectance images of 112 materials to study spatial and spectral textures. In this paper we discuss the calibration of the data and the method for addressing the distortions during image acquisition. We provide a spectral analysis based on non-negative matrix factorization to quantify the spectral complexity of the samples and extend local binary pattern operators to the hyperspectral texture analysis. The results demonstrate that although the spectral complexity of each of the textures is generally low, increasing the number of bands permits better texture classification, with the opponent band local binary pattern feature giving the best performance.Lire moins >
Lire la suite >We present a dataset of close range hyperspectral images of materials that span the visible and near infrared spectrums: HyTexiLa (Hyperspectral Texture images acquired in Laboratory). The data is intended to provide high spectral and spatial resolution reflectance images of 112 materials to study spatial and spectral textures. In this paper we discuss the calibration of the data and the method for addressing the distortions during image acquisition. We provide a spectral analysis based on non-negative matrix factorization to quantify the spectral complexity of the samples and extend local binary pattern operators to the hyperspectral texture analysis. The results demonstrate that although the spectral complexity of each of the textures is generally low, increasing the number of bands permits better texture classification, with the opponent band local binary pattern feature giving the best performance.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Collections :
Source :
Fichiers
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6068824/pdf
- Accès libre
- Accéder au document
- Accès libre
- Accéder au document