ClinMine: Optimizing the Management of ...
Type de document :
Compte-rendu et recension critique d'ouvrage
Titre :
ClinMine: Optimizing the Management of Patients in Hospital
Auteur(s) :
Dhaenens, Clarisse [Auteur]
Operational Research, Knowledge And Data [ORKAD]
Jacques, Julie [Auteur]
Université catholique de Lille [UCL]
Vandewalle, Vincent [Auteur]
Université de Lille
MOdel for Data Analysis and Learning [MODAL]
Vandromme, Maxence [Auteur]
Operational Research, Knowledge And Data [ORKAD]
Chazard, Emmanuel [Auteur]
Evaluation des technologies de santé et des pratiques médicales - ULR 2694 [METRICS]
Preda, Cristian [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Université de Lille
MOdel for Data Analysis and Learning [MODAL]
Amarioarei, Alexandru [Auteur]
MOdel for Data Analysis and Learning [MODAL]
Chaiwuttisak, Porpimol [Auteur]
Operational Research, Knowledge And Data [ORKAD]
Cozma, Cristina [Auteur]
MOdel for Data Analysis and Learning [MODAL]
Ficheur, Grégoire [Auteur]
Université de Lille
Kessaci, Marie-Eleonore [Auteur]
Operational Research, Knowledge And Data [ORKAD]
Perichon, Renaud [Auteur]
Evaluation des technologies de santé et des pratiques médicales - ULR 2694 [METRICS]
Taillard, Julien [Auteur]
Alicante [Seclin]
Bordet, Régis [Auteur]
Faculté de Médecine Henri Warembourg - Université de Lille
Département de Pharmacologie Médicale [Lille] [Pôle Recherche]
Lansiaux, Apolline [Auteur]
Génétique moléculaire et approches thérapeutiques des hémopathies malignes
Jourdan, Laetitia [Auteur]
Operational Research, Knowledge And Data [ORKAD]
Delerue, David [Auteur]
Alicante [Seclin]
Hansske, Arnaud [Auteur]
Groupe Hospitalier de l'Institut Catholique de Lille [GHICL]
Operational Research, Knowledge And Data [ORKAD]
Jacques, Julie [Auteur]
Université catholique de Lille [UCL]
Vandewalle, Vincent [Auteur]
Université de Lille
MOdel for Data Analysis and Learning [MODAL]
Vandromme, Maxence [Auteur]
Operational Research, Knowledge And Data [ORKAD]
Chazard, Emmanuel [Auteur]
Evaluation des technologies de santé et des pratiques médicales - ULR 2694 [METRICS]
Preda, Cristian [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Université de Lille
MOdel for Data Analysis and Learning [MODAL]
Amarioarei, Alexandru [Auteur]
MOdel for Data Analysis and Learning [MODAL]
Chaiwuttisak, Porpimol [Auteur]
Operational Research, Knowledge And Data [ORKAD]
Cozma, Cristina [Auteur]
MOdel for Data Analysis and Learning [MODAL]
Ficheur, Grégoire [Auteur]
Université de Lille
Kessaci, Marie-Eleonore [Auteur]
Operational Research, Knowledge And Data [ORKAD]
Perichon, Renaud [Auteur]
Evaluation des technologies de santé et des pratiques médicales - ULR 2694 [METRICS]
Taillard, Julien [Auteur]
Alicante [Seclin]
Bordet, Régis [Auteur]
Faculté de Médecine Henri Warembourg - Université de Lille
Département de Pharmacologie Médicale [Lille] [Pôle Recherche]
Lansiaux, Apolline [Auteur]
Génétique moléculaire et approches thérapeutiques des hémopathies malignes
Jourdan, Laetitia [Auteur]
Operational Research, Knowledge And Data [ORKAD]
Delerue, David [Auteur]
Alicante [Seclin]
Hansske, Arnaud [Auteur]
Groupe Hospitalier de l'Institut Catholique de Lille [GHICL]
Titre de la revue :
Innovation and Research in BioMedical engineering
Pagination :
83-92
Éditeur :
Elsevier Masson
Date de publication :
2018-01
ISSN :
1959-0318
Mot(s)-clé(s) en anglais :
electronic health records.
statistical analysis
optimization algorithms
heterogeneous data
patient pathway
Hospital information system
temporal data
statistical analysis
optimization algorithms
heterogeneous data
patient pathway
Hospital information system
temporal data
Discipline(s) HAL :
Sciences du Vivant [q-bio]/Médecine humaine et pathologie
Statistiques [stat]
Informatique [cs]
Sciences du Vivant [q-bio]/Santé publique et épidémiologie
Statistiques [stat]
Informatique [cs]
Sciences du Vivant [q-bio]/Santé publique et épidémiologie
Résumé en anglais : [en]
A better understanding of “patient pathway” thanks to data analysis can lead to better treatments for patients. The ClinMine project, supported by the The French National Research Agency (ANR), aims at proposing, from ...
Lire la suite >A better understanding of “patient pathway” thanks to data analysis can lead to better treatments for patients. The ClinMine project, supported by the The French National Research Agency (ANR), aims at proposing, from various case studies, algorithmic and statistical models able to handle this type of pathway data, focusing primarily on hospital data. This article presents two of these case studies, focusing on the integration of temporal data within analysis. First, the hypothesis that some aspects of the patient pathway can be described, even predicted, from the management process of the hospital medical mail is studied. Therefore a specific functional data analysis is driven, and several types of patients have been detected. The second case study deals with the detection of profiles through a biclustering of the patients. The difficulty to simultaneously deal with heterogeneous data, including temporal data is exposed and a method is proposed. Results on real data show the effectiveness of the proposed method.Lire moins >
Lire la suite >A better understanding of “patient pathway” thanks to data analysis can lead to better treatments for patients. The ClinMine project, supported by the The French National Research Agency (ANR), aims at proposing, from various case studies, algorithmic and statistical models able to handle this type of pathway data, focusing primarily on hospital data. This article presents two of these case studies, focusing on the integration of temporal data within analysis. First, the hypothesis that some aspects of the patient pathway can be described, even predicted, from the management process of the hospital medical mail is studied. Therefore a specific functional data analysis is driven, and several types of patients have been detected. The second case study deals with the detection of profiles through a biclustering of the patients. The difficulty to simultaneously deal with heterogeneous data, including temporal data is exposed and a method is proposed. Results on real data show the effectiveness of the proposed method.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Collections :
Source :
Fichiers
- https://hal.inria.fr/hal-01692197/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-01692197/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-01692197/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- ClinMine-IRBM_VF-24112017%20%281%29.pdf
- Accès libre
- Accéder au document
- ClinMine-IRBM_VF-24112017%20%281%29.pdf
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- ClinMine-IRBM_VF-24112017%20%281%29.pdf
- Accès libre
- Accéder au document