Visually Supporting Image Annotation based ...
Type de document :
Autre communication scientifique (congrès sans actes - poster - séminaire...): Communication dans un congrès avec actes
Titre :
Visually Supporting Image Annotation based on Visual Features and Ontologies
Auteur(s) :
Filali, Jalila [Auteur]
École Nationale des Sciences de l'Informatique [Manouba] [ENSI]
Zghal, Hajer [Auteur]
École Nationale des Sciences de l'Informatique [Manouba] [ENSI]
Martinet, Jean [Auteur]
FOX MIIRE [LIFL]
École Nationale des Sciences de l'Informatique [Manouba] [ENSI]
Zghal, Hajer [Auteur]
École Nationale des Sciences de l'Informatique [Manouba] [ENSI]
Martinet, Jean [Auteur]
FOX MIIRE [LIFL]
Titre de la manifestation scientifique :
21st International Conference Information Visualisation
Ville :
London
Pays :
Royaume-Uni
Date de début de la manifestation scientifique :
2017-07-11
Mot(s)-clé(s) en anglais :
Visualisation
image annotation
visual features
ontologies
image annotation
visual features
ontologies
Discipline(s) HAL :
Informatique [cs]/Vision par ordinateur et reconnaissance de formes [cs.CV]
Résumé en anglais : [en]
Automatic Image Annotation (AIA) is a challenging problem in the field of image retrieval, and several methods have been proposed. However, visually supporting this important tasks and reducing the semantic gap between ...
Lire la suite >Automatic Image Annotation (AIA) is a challenging problem in the field of image retrieval, and several methods have been proposed. However, visually supporting this important tasks and reducing the semantic gap between low-level image features and high-level semantic concepts still remains a key issue. In this paper, we propose a visually supporting image annotation framework based on visual features and ontologies. Our framework relies on three main components: (i) extraction and classification of features component, (ii) ontology's building component and (iii) image annotation component. Our goal consists on improving the visual image annotation by:(1) extracting invariant and complex visual features; (2) integrating feature classification results and semantic concepts to build ontology and (3) combining both visual and semantic similarities during the image annotation process.Lire moins >
Lire la suite >Automatic Image Annotation (AIA) is a challenging problem in the field of image retrieval, and several methods have been proposed. However, visually supporting this important tasks and reducing the semantic gap between low-level image features and high-level semantic concepts still remains a key issue. In this paper, we propose a visually supporting image annotation framework based on visual features and ontologies. Our framework relies on three main components: (i) extraction and classification of features component, (ii) ontology's building component and (iii) image annotation component. Our goal consists on improving the visual image annotation by:(1) extracting invariant and complex visual features; (2) integrating feature classification results and semantic concepts to build ontology and (3) combining both visual and semantic similarities during the image annotation process.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- https://hal.archives-ouvertes.fr/hal-01693362/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-01693362/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- VERSION_FINALE_Accp.pdf
- Accès libre
- Accéder au document