The 2 edge-disjoint 3-paths polyhedron
Type de document :
Compte-rendu et recension critique d'ouvrage
Titre :
The 2 edge-disjoint 3-paths polyhedron
Auteur(s) :
Botton, Quentin [Auteur]
Université Catholique de Louvain = Catholic University of Louvain [UCL]
Fortz, Bernard [Auteur]
Integrated Optimization with Complex Structure [INOCS]
Gouveia, Luis [Auteur]
Universidade de Lisboa = University of Lisbon = Université de Lisbonne [ULISBOA]
Université Catholique de Louvain = Catholic University of Louvain [UCL]
Fortz, Bernard [Auteur]
Integrated Optimization with Complex Structure [INOCS]
Gouveia, Luis [Auteur]
Universidade de Lisboa = University of Lisbon = Université de Lisbonne [ULISBOA]
Titre de la revue :
Annals of Telecommunications - annales des télécommunications
Pagination :
29–36
Éditeur :
Springer
Date de publication :
2018
ISSN :
0003-4347
Mot(s)-clé(s) en anglais :
Hop constraints
Survivability
Network design
Combinatorial Optimization
Survivability
Network design
Combinatorial Optimization
Discipline(s) HAL :
Computer Science [cs]/Operations Research [math.OC]
Résumé en anglais : [en]
Given an undirected graph, we study the problem of finding K edge-disjoint paths, each one containing at most L edges, between a given pair of nodes. We focus on the case of K = 2 and L = 3. For this particular case, ...
Lire la suite >Given an undirected graph, we study the problem of finding K edge-disjoint paths, each one containing at most L edges, between a given pair of nodes. We focus on the case of K = 2 and L = 3. For this particular case, previous known compact formulations are valid only for the case with non-negative edge costs. We provide the first compact linear description that is also valid for general edge costs. We describe new valid inequalities that are added to a well known extended formulation in a layered graph, to get a full description of the polyhedron for K = 2 and L = 3. We use a reduction of the problem to a size-2 stable set problem to prove this second property.Lire moins >
Lire la suite >Given an undirected graph, we study the problem of finding K edge-disjoint paths, each one containing at most L edges, between a given pair of nodes. We focus on the case of K = 2 and L = 3. For this particular case, previous known compact formulations are valid only for the case with non-negative edge costs. We provide the first compact linear description that is also valid for general edge costs. We describe new valid inequalities that are added to a well known extended formulation in a layered graph, to get a full description of the polyhedron for K = 2 and L = 3. We use a reduction of the problem to a size-2 stable set problem to prove this second property.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Collections :
Source :
Fichiers
- https://hal.inria.fr/hal-01673313/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-01673313/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-01673313/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- BFG2016-ANTE-final.pdf
- Accès libre
- Accéder au document
- BFG2016-ANTE-final.pdf
- Accès libre
- Accéder au document