Computing effectively stabilizing controllers ...
Type de document :
Communication dans un congrès avec actes
Titre :
Computing effectively stabilizing controllers for a class of $n$D systems
Auteur(s) :
Bouzidi, Yacine [Auteur]
Non-Asymptotic estimation for online systems [NON-A]
Cluzeau, Thomas [Auteur]
Mathématiques & Sécurité de l'information [XLIM-MATHIS]
Moroz, Guillaume [Auteur]
Geometric Algorithms and Models Beyond the Linear and Euclidean realm [GAMBLE]
Quadrat, Alban [Auteur]
Non-Asymptotic estimation for online systems [NON-A]
Non-Asymptotic estimation for online systems [NON-A]
Cluzeau, Thomas [Auteur]
Mathématiques & Sécurité de l'information [XLIM-MATHIS]
Moroz, Guillaume [Auteur]
Geometric Algorithms and Models Beyond the Linear and Euclidean realm [GAMBLE]
Quadrat, Alban [Auteur]

Non-Asymptotic estimation for online systems [NON-A]
Titre de la manifestation scientifique :
The 20th World Congress of the International Federation of Automatic Control
Ville :
Toulouse
Pays :
France
Date de début de la manifestation scientifique :
2017-07-09
Date de publication :
2017-07
Mot(s)-clé(s) en anglais :
polynomial ideals
stabilization
$nD$ systems
symbolic-numeric methods
stability
stabilization
$nD$ systems
symbolic-numeric methods
stability
Discipline(s) HAL :
Informatique [cs]/Calcul formel [cs.SC]
Résumé en anglais : [en]
In this paper, we study the internal stabilizability and internal stabilization problems for multidimensional (nD) systems. Within the fractional representation approach, a multidimen-sional system can be studied by means ...
Lire la suite >In this paper, we study the internal stabilizability and internal stabilization problems for multidimensional (nD) systems. Within the fractional representation approach, a multidimen-sional system can be studied by means of matrices with entries in the integral domain of structurally stable rational fractions, namely the ring of rational functions which have no poles in the closed unit polydisc U n = {z = (z 1 ,. .. , z n) ∈ C n | |z 1 | 1,. .. , |z n | 1}. It is known that the internal stabilizability of a multidimensional system can be investigated by studying a certain polynomial ideal I = p 1 ,. .. , p r that can be explicitly described in terms of the transfer matrix of the plant. More precisely the system is stabilizable if and only if V (I) = {z ∈ C n | p 1 (z) = · · · = p r (z) = 0} ∩ U n = ∅. In the present article, we consider the specific class of linear nD systems (which includes the class of 2D systems) for which the ideal I is zero-dimensional, i.e., the p i 's have only a finite number of common complex zeros. We propose effective symbolic-numeric algorithms for testing if V (I) ∩ U n = ∅, as well as for computing, if it exists, a stable polynomial p ∈ I which allows the effective computation of a stabilizing controller. We illustrate our algorithms through an example and finally provide running times of prototype implementations for 2D and 3D systems.Lire moins >
Lire la suite >In this paper, we study the internal stabilizability and internal stabilization problems for multidimensional (nD) systems. Within the fractional representation approach, a multidimen-sional system can be studied by means of matrices with entries in the integral domain of structurally stable rational fractions, namely the ring of rational functions which have no poles in the closed unit polydisc U n = {z = (z 1 ,. .. , z n) ∈ C n | |z 1 | 1,. .. , |z n | 1}. It is known that the internal stabilizability of a multidimensional system can be investigated by studying a certain polynomial ideal I = p 1 ,. .. , p r that can be explicitly described in terms of the transfer matrix of the plant. More precisely the system is stabilizable if and only if V (I) = {z ∈ C n | p 1 (z) = · · · = p r (z) = 0} ∩ U n = ∅. In the present article, we consider the specific class of linear nD systems (which includes the class of 2D systems) for which the ideal I is zero-dimensional, i.e., the p i 's have only a finite number of common complex zeros. We propose effective symbolic-numeric algorithms for testing if V (I) ∩ U n = ∅, as well as for computing, if it exists, a stable polynomial p ∈ I which allows the effective computation of a stabilizing controller. We illustrate our algorithms through an example and finally provide running times of prototype implementations for 2D and 3D systems.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- https://hal.archives-ouvertes.fr/hal-01667161/document
- Accès libre
- Accéder au document
- http://arxiv.org/pdf/1801.04982
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-01667161/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-01667161/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- stabilisation.pdf
- Accès libre
- Accéder au document
- 1801.04982
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- stabilisation.pdf
- Accès libre
- Accéder au document