Whole-brain high-resolution structural ...
Type de document :
Compte-rendu et recension critique d'ouvrage
Titre :
Whole-brain high-resolution structural connectome: inter-subject validation and application to the anatomical segmentation of the striatum
Auteur(s) :
Besson, Pierre [Auteur]
Centre de résonance magnétique biologique et médicale [CRMBM]
Centre d'Exploration Métabolique par Résonance Magnétique [Hôpital de la Timone - APHM] [CEMEREM]
Carrière, Nicolas [Auteur]
Troubles cognitifs dégénératifs et vasculaires - U 1171 - EA 1046 [TCDV]
Bandt, Sarah Kathleen [Auteur]
Centre de résonance magnétique biologique et médicale [CRMBM]
Centre d'Exploration Métabolique par Résonance Magnétique [Hôpital de la Timone - APHM] [CEMEREM]
Tommasi, Marc [Auteur]
Machine Learning in Information Networks [MAGNET]
Université de Lille
Leclerc, Xavier [Auteur]
Services de neuroradiologie [Lille]
Derambure, Philippe [Auteur]
Service de neurophysiologie clinique [CHRU Lille]
Troubles cognitifs dégénératifs et vasculaires - U 1171 - EA 1046 [TCDV]
Lopes, Renaud [Auteur]
Jet Propulsion Laboratory [JPL]
Tyvaert, Louise [Auteur]
Centre Hospitalier Régional Universitaire de Nancy [CHRU Nancy]
Centre de Recherche en Automatique de Nancy [CRAN]
Centre de résonance magnétique biologique et médicale [CRMBM]
Centre d'Exploration Métabolique par Résonance Magnétique [Hôpital de la Timone - APHM] [CEMEREM]
Carrière, Nicolas [Auteur]
Troubles cognitifs dégénératifs et vasculaires - U 1171 - EA 1046 [TCDV]
Bandt, Sarah Kathleen [Auteur]
Centre de résonance magnétique biologique et médicale [CRMBM]
Centre d'Exploration Métabolique par Résonance Magnétique [Hôpital de la Timone - APHM] [CEMEREM]
Tommasi, Marc [Auteur]
Machine Learning in Information Networks [MAGNET]
Université de Lille
Leclerc, Xavier [Auteur]
Services de neuroradiologie [Lille]
Derambure, Philippe [Auteur]
Service de neurophysiologie clinique [CHRU Lille]
Troubles cognitifs dégénératifs et vasculaires - U 1171 - EA 1046 [TCDV]
Lopes, Renaud [Auteur]
Jet Propulsion Laboratory [JPL]
Tyvaert, Louise [Auteur]
Centre Hospitalier Régional Universitaire de Nancy [CHRU Nancy]
Centre de Recherche en Automatique de Nancy [CRAN]
Titre de la revue :
Brain Topography: a Journal of Cerebral Function and Dynamics
Pagination :
291-302
Éditeur :
Springer Verlag
Date de publication :
2017-05
ISSN :
0896-0267
Mot(s)-clé(s) en anglais :
Striatum clustering
High-resolution
snc
Surface-based connectivity
Diffusion Magnetic Resonance Imaging
Connectome
High-resolution
snc
Surface-based connectivity
Diffusion Magnetic Resonance Imaging
Connectome
Discipline(s) HAL :
Informatique [cs]/Imagerie médicale
Sciences du Vivant [q-bio]/Ingénierie biomédicale/Imagerie
Sciences du Vivant [q-bio]/Ingénierie biomédicale/Imagerie
Résumé en anglais : [en]
The present study describes extraction of high-resolution structural connectome (HRSC) in 99 healthy subjects, acquired and made available by the Human Connectome Project. Single subject connectomes were then registered ...
Lire la suite >The present study describes extraction of high-resolution structural connectome (HRSC) in 99 healthy subjects, acquired and made available by the Human Connectome Project. Single subject connectomes were then registered to the common surface space to allow assessment of inter-individual reproducibility of this novel technique using a leave-one-out approach. The anatomic relevance of the surface-based connectome was examined via a clustering algorithm, which identified anatomic subdivisions within the striatum. The connectivity of these striatal subdivisions were then mapped on the cortical and other subcortical surfaces. Findings demonstrate that HRSC analysis is robust across individuals and accurately models the actual underlying brain networks related to the striatum. This suggests that this method has the potential to model and characterize the healthy whole-brain structural network at high anatomic resolution.Lire moins >
Lire la suite >The present study describes extraction of high-resolution structural connectome (HRSC) in 99 healthy subjects, acquired and made available by the Human Connectome Project. Single subject connectomes were then registered to the common surface space to allow assessment of inter-individual reproducibility of this novel technique using a leave-one-out approach. The anatomic relevance of the surface-based connectome was examined via a clustering algorithm, which identified anatomic subdivisions within the striatum. The connectivity of these striatal subdivisions were then mapped on the cortical and other subcortical surfaces. Findings demonstrate that HRSC analysis is robust across individuals and accurately models the actual underlying brain networks related to the striatum. This suggests that this method has the potential to model and characterize the healthy whole-brain structural network at high anatomic resolution.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Collections :
Source :