• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Boundary Crossing for General Exponential Families
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Communication dans un congrès avec actes
Title :
Boundary Crossing for General Exponential Families
Author(s) :
Maillard, Odalric-Ambrym [Auteur] refId
Sequential Learning [SEQUEL]
Conference title :
Algorithmic Learning Theory
City :
Kyoto
Country :
Japon
Start date of the conference :
2017-10
Book title :
Journal of Machine Learning Research
Journal title :
Proceedings of Algorithmic Learning Theory
Publication date :
2017
English keyword(s) :
Exponential Families
Bregman Concentration
Multi-armed Bandits
Optimality
HAL domain(s) :
Statistiques [stat]/Machine Learning [stat.ML]
Mathématiques [math]/Statistiques [math.ST]
English abstract : [en]
We consider parametric exponential families of dimension K on the real line. We study a variant of boundary crossing probabilities coming from the multi-armed bandit literature, in the case when the real-valued distributions ...
Show more >
We consider parametric exponential families of dimension K on the real line. We study a variant of boundary crossing probabilities coming from the multi-armed bandit literature, in the case when the real-valued distributions form an exponential family of dimension K. Formally, our result is a concentration inequality that bounds the probability that B ψ (θ n , θ) f (t/n)/n, where θ is the parameter of an unknown target distribution, θ n is the empirical parameter estimate built from n observations, ψ is the log-partition function of the exponential family and B ψ is the corresponding Bregman divergence. From the perspective of stochastic multi-armed bandits, we pay special attention to the case when the boundary function f is logarithmic, as it enables to analyze the regret of the state-of-the-art KL-ucb and KL-ucb+ strategies, whose analysis was left open in such generality. Indeed, previous results only hold for the case when K = 1, while we provide results for arbitrary finite dimension K, thus considerably extending the existing results. Perhaps surprisingly, we highlight that the proof techniques to achieve these strong results already existed three decades ago in the work of T.L. Lai, and were apparently forgotten in the bandit community. We provide a modern rewriting of these beautiful techniques that we believe are useful beyond the application to stochastic multi-armed bandits.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
ANR Project :
BANDITS MANCHOTS POUR SIGNAUX NON-STATIONNAIRES ET STRUCTURES
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-01615427/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-01615427/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-01615427/document
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017