Identification of a dynamical model for ...
Type de document :
Article dans une revue scientifique: Article original
DOI :
Titre :
Identification of a dynamical model for phytoplankton bloom based on high frequency measurements
Auteur(s) :
Ahmed, Hafiz [Auteur]
Coventry University
Ushirobira, Rosane [Auteur]
Non-Asymptotic estimation for online systems [NON-A]
Efimov, Denis [Auteur]
Non-Asymptotic estimation for online systems [NON-A]
Perruquetti, Wilfrid [Auteur]
Non-Asymptotic estimation for online systems [NON-A]
Coventry University
Ushirobira, Rosane [Auteur]

Non-Asymptotic estimation for online systems [NON-A]
Efimov, Denis [Auteur]

Non-Asymptotic estimation for online systems [NON-A]
Perruquetti, Wilfrid [Auteur]

Non-Asymptotic estimation for online systems [NON-A]
Titre de la revue :
International Journal of Environment and Pollution
Pagination :
74 - 86
Éditeur :
Inderscience
Date de publication :
2017-11-23
ISSN :
0957-4352
Mot(s)-clé(s) en anglais :
Model identification
ARMAX mode
phytoplankton bloom
ARMAX mode
phytoplankton bloom
Discipline(s) HAL :
Sciences de l'ingénieur [physics]/Automatique / Robotique
Sciences de l'environnement/Ingénierie de l'environnement
Sciences de l'ingénieur [physics]
Sciences de l'environnement/Ingénierie de l'environnement
Sciences de l'ingénieur [physics]
Résumé en anglais : [en]
High frequency measurements of various water characteristics and nutrients information of the Marel-Carnot sea monitoring station (Boulogne-sur-Mer, France) have been used to identify a physiological model for phytoplankton ...
Lire la suite >High frequency measurements of various water characteristics and nutrients information of the Marel-Carnot sea monitoring station (Boulogne-sur-Mer, France) have been used to identify a physiological model for phytoplankton bloom through the fluorescence signal. An auto-regressive-moving-average with exogenous inputs (ARMAX) model is designed and tested based on the dataset. The model takes into account the effect of the measured water characteristics and nutrient level information. Through this study, it is demonstrated that the developed dynamical model can be used for estimating the fluorescence level (which characterizes the phytoplankton biomass) and for predicting the various states of phytoplankton bloom. Thus, the developed model can be used for monitoring phytoplankton biomass in the water which in turn might give information about unbalanced ecosystem or change in water quality.Lire moins >
Lire la suite >High frequency measurements of various water characteristics and nutrients information of the Marel-Carnot sea monitoring station (Boulogne-sur-Mer, France) have been used to identify a physiological model for phytoplankton bloom through the fluorescence signal. An auto-regressive-moving-average with exogenous inputs (ARMAX) model is designed and tested based on the dataset. The model takes into account the effect of the measured water characteristics and nutrient level information. Through this study, it is demonstrated that the developed dynamical model can be used for estimating the fluorescence level (which characterizes the phytoplankton biomass) and for predicting the various states of phytoplankton bloom. Thus, the developed model can be used for monitoring phytoplankton biomass in the water which in turn might give information about unbalanced ecosystem or change in water quality.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- https://hal.inria.fr/hal-01586791/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-01586791/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-01586791/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- authorFinalVersion.pdf
- Accès libre
- Accéder au document
- authorFinalVersion.pdf
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- authorFinalVersion.pdf
- Accès libre
- Accéder au document