Density Estimation on the rotation group ...
Type de document :
Article dans une revue scientifique: Article original
Titre :
Density Estimation on the rotation group using Diffusive wavelets
Auteur(s) :
Le Bihan, Nicolas [Auteur]
GIPSA - Communication Information and Complex Systems [GIPSA-CICS]
Flamant, Julien [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Manton, Jonathan [Auteur]
Department of Electrical and Electronic Engineering [Melbourne]
GIPSA - Communication Information and Complex Systems [GIPSA-CICS]
Flamant, Julien [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Manton, Jonathan [Auteur]
Department of Electrical and Electronic Engineering [Melbourne]
Titre de la revue :
Journal of Advances in Information Fusion
Pagination :
173-185
Éditeur :
ISIF
Date de publication :
2016
ISSN :
1557-6418
Discipline(s) HAL :
Informatique [cs]/Traitement du signal et de l'image [eess.SP]
Résumé en anglais : [en]
This paper considers the problem of estimating probability den- sity functions on the rotation group SO(3). Two distinct approaches are proposed, one based on characteristic functions and the other on wavelets using the ...
Lire la suite >This paper considers the problem of estimating probability den- sity functions on the rotation group SO(3). Two distinct approaches are proposed, one based on characteristic functions and the other on wavelets using the heat kernel. Expressions are derived for their Mean Integrated Squared Errors. The performance of the estima- tors is studied numerically and compared with the performance of an existing technique using the De La Vall´ee Poussin kernel estimator. The heat kernel wavelet approach appears to offer the best compromise, with faster convergence to the optimal bound and guaranteed positivity of the estimated probability density function.Lire moins >
Lire la suite >This paper considers the problem of estimating probability den- sity functions on the rotation group SO(3). Two distinct approaches are proposed, one based on characteristic functions and the other on wavelets using the heat kernel. Expressions are derived for their Mean Integrated Squared Errors. The performance of the estima- tors is studied numerically and compared with the performance of an existing technique using the De La Vall´ee Poussin kernel estimator. The heat kernel wavelet approach appears to offer the best compromise, with faster convergence to the optimal bound and guaranteed positivity of the estimated probability density function.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :