• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Second-Order Kernel Online Convex Optimization ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Communication dans un congrès avec actes
Title :
Second-Order Kernel Online Convex Optimization with Adaptive Sketching
Author(s) :
Calandriello, Daniele [Auteur]
Sequential Learning [SEQUEL]
Lazaric, Alessandro [Auteur]
Sequential Learning [SEQUEL]
Valko, Michal [Auteur] refId
Sequential Learning [SEQUEL]
Conference title :
International Conference on Machine Learning
City :
Sydney
Country :
Australie
Start date of the conference :
2017
HAL domain(s) :
Statistiques [stat]/Machine Learning [stat.ML]
English abstract : [en]
Kernel online convex optimization (KOCO) is a framework combining the expressiveness of non-parametric kernel models with the regret guarantees of online learning. First-order KOCO methods such as functional gradient descent ...
Show more >
Kernel online convex optimization (KOCO) is a framework combining the expressiveness of non-parametric kernel models with the regret guarantees of online learning. First-order KOCO methods such as functional gradient descent require only $O(t)$ time and space per iteration, and, when the only information on the losses is their convexity, achieve a minimax optimal $O(\sqrt{T})$ regret. Nonetheless, many common losses in kernel problems, such as squared loss, logistic loss, and squared hinge loss posses stronger curvature that can be exploited. In this case, second-order KOCO methods achieve $O(\log(\Det(K)))$ regret, which we show scales as $O(deff \log T)$, where $deff$ is the effective dimension of the problem and is usually much smaller than $O(\sqrt{T})$. The main drawback of second-order methods is their much higher $O(t^2)$ space and time complexity. In this paper, we introduce kernel online Newton step (KONS), a new second-order KOCO method that also achieves $O(deff\log T)$ regret. To address the computational complexity of second-order methods, we introduce a new matrix sketching algorithm for the kernel matrix~$K$, and show that for a chosen parameter $\gamma \leq 1$ our Sketched-KONS reduces the space and time complexity by a factor of $\gamma^2$ to $O(t^2\gamma^2)$ space and time per iteration, while incurring only $1/\gamma$ times more regret.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
ANR Project :
Extraction et transfert de connaissances dans l'apprentissage par renforcement
Inférence bayésienne à ressources limitées - données massives et modèles coûteux
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.inria.fr/hal-01537799/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-01537799/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-01537799/document
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017