A fitness landscape analysis of Pareto ...
Document type :
Communication dans un congrès avec actes
Title :
A fitness landscape analysis of Pareto local search on bi-objective permutation flowshop scheduling problems
Author(s) :
Liefooghe, Arnaud [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Derbel, Bilel [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Verel, Sebastien [Auteur]
Laboratoire d'Informatique Signal et Image de la Côte d'Opale [LISIC]
Aguirre, Hernan [Auteur]
Faculty of Engineering [Nagano]
Tanaka, Kiyoshi [Auteur]
Faculty of Engineering [Nagano]

Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Derbel, Bilel [Auteur]

Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Verel, Sebastien [Auteur]
Laboratoire d'Informatique Signal et Image de la Côte d'Opale [LISIC]
Aguirre, Hernan [Auteur]
Faculty of Engineering [Nagano]
Tanaka, Kiyoshi [Auteur]
Faculty of Engineering [Nagano]
Scientific editor(s) :
Heike Trautmann
Günter Rudolph
Kathrin Klamroth
Oliver Schütze
Margaret Wiecek
Yaochu Jin
Christian Grimme
Günter Rudolph
Kathrin Klamroth
Oliver Schütze
Margaret Wiecek
Yaochu Jin
Christian Grimme
Conference title :
9th International Conference on Evolutionary Multi-Criterion Optimization (EMO 2017)
City :
Münster
Country :
Allemagne
Start date of the conference :
2017-03-19
Book title :
Evolutionary Multi-Criterion Optimization9th International Conference, EMO 2017, Münster, Germany, March 19-22, 2017, Proceedings
Journal title :
Lecture Notes in Computer Science (LNCS)
Publisher :
Springer
Publication date :
2017-02
HAL domain(s) :
Informatique [cs]/Intelligence artificielle [cs.AI]
English abstract : [en]
We study the difficulty of solving different bi-objective formulations of the permutation flowshop scheduling problem by adopting a fitness landscape analysis perspective. Our main goal is to shed the light on how different ...
Show more >We study the difficulty of solving different bi-objective formulations of the permutation flowshop scheduling problem by adopting a fitness landscape analysis perspective. Our main goal is to shed the light on how different problem features can impact the performance of Pareto local search algorithms. Specifically, we conduct an empirical analysis addressing the challenging question of quantifying the individual effect and the joint impact of different problem features on the success rate of the considered approaches. Our findings support that multi-objective fitness landscapes enable to devise sound general-purpose features for assessing the expected difficulty in solving permutation flowshop scheduling problems, hence pushing a step towards a better understanding of the challenges that multi-objective randomized search heuristics have to face.Show less >
Show more >We study the difficulty of solving different bi-objective formulations of the permutation flowshop scheduling problem by adopting a fitness landscape analysis perspective. Our main goal is to shed the light on how different problem features can impact the performance of Pareto local search algorithms. Specifically, we conduct an empirical analysis addressing the challenging question of quantifying the individual effect and the joint impact of different problem features on the success rate of the considered approaches. Our findings support that multi-objective fitness landscapes enable to devise sound general-purpose features for assessing the expected difficulty in solving permutation flowshop scheduling problems, hence pushing a step towards a better understanding of the challenges that multi-objective randomized search heuristics have to face.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
Source :
Files
- https://hal.archives-ouvertes.fr/hal-01496357/document
- Open access
- Access the document
- https://hal.archives-ouvertes.fr/hal-01496357/document
- Open access
- Access the document
- https://hal.archives-ouvertes.fr/hal-01496357/document
- Open access
- Access the document
- document
- Open access
- Access the document
- liefooghe.emo2017.pdf
- Open access
- Access the document
- document
- Open access
- Access the document
- liefooghe.emo2017.pdf
- Open access
- Access the document