A relaxed characterization of ISS for ...
Type de document :
Article dans une revue scientifique: Article original
Titre :
A relaxed characterization of ISS for periodic systems with multiple invariant sets
Auteur(s) :
Efimov, Denis [Auteur]
Non-Asymptotic estimation for online systems [NON-A]
Schiffer, Johannes [Auteur]
University of Leeds
Barabanov, Nikita [Auteur]
University of North Dakota [Grand Forks] [UND]
Ortega, Romeo [Auteur]
Laboratoire des signaux et systèmes [L2S]

Non-Asymptotic estimation for online systems [NON-A]
Schiffer, Johannes [Auteur]
University of Leeds
Barabanov, Nikita [Auteur]
University of North Dakota [Grand Forks] [UND]
Ortega, Romeo [Auteur]
Laboratoire des signaux et systèmes [L2S]
Titre de la revue :
European Journal of Control
Pagination :
1-7
Éditeur :
Elsevier
Date de publication :
2017-12-01
ISSN :
0947-3580
Discipline(s) HAL :
Sciences de l'ingénieur [physics]/Automatique / Robotique
Résumé en anglais : [en]
A necessary and sufficient criterion to establish input-to-state stability (ISS) of nonlinear dynamical systems, the dynamics of which are periodic with respect to certain state variables and which possess multiple invariant ...
Lire la suite >A necessary and sufficient criterion to establish input-to-state stability (ISS) of nonlinear dynamical systems, the dynamics of which are periodic with respect to certain state variables and which possess multiple invariant solutions (equilibria, limit cycles, etc.), is provided. Unlike standard Lyapunov approaches, the condition is relaxed and formulated via a sign-indefinite function with sign-definite derivative, and by taking the system's periodicity explicitly into account. The new result is established by using the framework of cell structure and it complements the ISS theory of multistable dynamics for periodic systems. The efficiency of the proposed approach is illustrated via the global analysis of a nonlinear pendulum with constant persistent input.Lire moins >
Lire la suite >A necessary and sufficient criterion to establish input-to-state stability (ISS) of nonlinear dynamical systems, the dynamics of which are periodic with respect to certain state variables and which possess multiple invariant solutions (equilibria, limit cycles, etc.), is provided. Unlike standard Lyapunov approaches, the condition is relaxed and formulated via a sign-indefinite function with sign-definite derivative, and by taking the system's periodicity explicitly into account. The new result is established by using the framework of cell structure and it complements the ISS theory of multistable dynamics for periodic systems. The efficiency of the proposed approach is illustrated via the global analysis of a nonlinear pendulum with constant persistent input.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- https://hal.inria.fr/hal-01509647/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-01509647/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-01509647/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-01509647/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- LeonovISS_J.pdf
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- LeonovISS_J.pdf
- Accès libre
- Accéder au document