• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A relaxed characterization of ISS for ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Article dans une revue scientifique
DOI :
10.1016/j.ejcon.2017.04.002
Title :
A relaxed characterization of ISS for periodic systems with multiple invariant sets
Author(s) :
Efimov, Denis [Auteur] refId
Non-Asymptotic estimation for online systems [NON-A]
Schiffer, Johannes [Auteur]
University of Leeds
Barabanov, Nikita [Auteur]
University of North Dakota [Grand Forks] [UND]
Ortega, Romeo [Auteur]
Laboratoire des signaux et systèmes [L2S]
Journal title :
European Journal of Control
Pages :
1-7
Publisher :
Elsevier
Publication date :
2017-12-01
ISSN :
0947-3580
HAL domain(s) :
Sciences de l'ingénieur [physics]/Automatique / Robotique
English abstract : [en]
A necessary and sufficient criterion to establish input-to-state stability (ISS) of nonlinear dynamical systems, the dynamics of which are periodic with respect to certain state variables and which possess multiple invariant ...
Show more >
A necessary and sufficient criterion to establish input-to-state stability (ISS) of nonlinear dynamical systems, the dynamics of which are periodic with respect to certain state variables and which possess multiple invariant solutions (equilibria, limit cycles, etc.), is provided. Unlike standard Lyapunov approaches, the condition is relaxed and formulated via a sign-indefinite function with sign-definite derivative, and by taking the system's periodicity explicitly into account. The new result is established by using the framework of cell structure and it complements the ISS theory of multistable dynamics for periodic systems. The efficiency of the proposed approach is illustrated via the global analysis of a nonlinear pendulum with constant persistent input.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.inria.fr/hal-01509647/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-01509647/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-01509647/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-01509647/document
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017