Benchmarking the Pure Random Search on the ...
Document type :
Communication dans un congrès avec actes
DOI :
Title :
Benchmarking the Pure Random Search on the Bi-objective BBOB-2016 Testbed
Author(s) :
Auger, Anne [Auteur]
Machine Learning and Optimisation [TAO]
Brockhoff, Dimo [Auteur]
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Hansen, Nikolaus [Auteur]
Machine Learning and Optimisation [TAO]
Tušar, Dejan [Auteur]
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Tušar, Tea [Auteur]
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Wagner, Tobias [Auteur]
Technische Universität Dortmund [Dortmund] [TU]
Machine Learning and Optimisation [TAO]
Brockhoff, Dimo [Auteur]
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Hansen, Nikolaus [Auteur]
Machine Learning and Optimisation [TAO]
Tušar, Dejan [Auteur]
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Tušar, Tea [Auteur]
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Wagner, Tobias [Auteur]
Technische Universität Dortmund [Dortmund] [TU]
Conference title :
GECCO 2016 - Genetic and Evolutionary Computation Conference
City :
Denver, CO
Country :
Etats-Unis d'Amérique
Start date of the conference :
2016-07-20
Book title :
GECCO '16 Companion Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion
Publisher :
ACM
English keyword(s) :
Benchmarking
Black-box optimization
Bi-objective optimization
Black-box optimization
Bi-objective optimization
HAL domain(s) :
Informatique [cs]/Réseau de neurones [cs.NE]
Mathématiques [math]/Optimisation et contrôle [math.OC]
Mathématiques [math]/Optimisation et contrôle [math.OC]
English abstract : [en]
The Comparing Continuous Optimizers platform COCO has become a standard for benchmarking numerical (single-objective) optimization algorithms effortlessly. In 2016, COCO has been extended towards multi-objective optimization ...
Show more >The Comparing Continuous Optimizers platform COCO has become a standard for benchmarking numerical (single-objective) optimization algorithms effortlessly. In 2016, COCO has been extended towards multi-objective optimization by providing a first bi-objective test suite. To provide a baseline, we benchmark a pure random search on this bi-objective bbob-biobj test suite of the COCO platform. For each combination of function, dimension n, and instance of the test suite, $10^6 · n$ candidate solutions are sampled uniformly within the sampling box $[−5, 5]^n$ .Show less >
Show more >The Comparing Continuous Optimizers platform COCO has become a standard for benchmarking numerical (single-objective) optimization algorithms effortlessly. In 2016, COCO has been extended towards multi-objective optimization by providing a first bi-objective test suite. To provide a baseline, we benchmark a pure random search on this bi-objective bbob-biobj test suite of the COCO platform. For each combination of function, dimension n, and instance of the test suite, $10^6 · n$ candidate solutions are sampled uniformly within the sampling box $[−5, 5]^n$ .Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
ANR Project :
Collections :
Source :
Files
- https://hal.inria.fr/hal-01435455/document
- Open access
- Access the document
- https://hal.inria.fr/hal-01435455/document
- Open access
- Access the document
- https://hal.inria.fr/hal-01435455/document
- Open access
- Access the document
- https://hal.inria.fr/hal-01435455/document
- Open access
- Access the document
- document
- Open access
- Access the document
- wk0807-auger-RSsingle-authorversion.pdf
- Open access
- Access the document
- wk0807-auger-RSsingle-authorversion.pdf
- Open access
- Access the document
- document
- Open access
- Access the document
- wk0807-auger-RSsingle-authorversion.pdf
- Open access
- Access the document