Benchmarking RM-MEDA on the Bi-objective ...
Document type :
Communication dans un congrès avec actes
DOI :
Title :
Benchmarking RM-MEDA on the Bi-objective BBOB-2016 Test Suite
Author(s) :
Auger, Anne [Auteur]
Machine Learning and Optimisation [TAO]
Brockhoff, Dimo [Auteur]
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Hansen, Nikolaus [Auteur]
Machine Learning and Optimisation [TAO]
Tušar, Dejan [Auteur]
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Tušar, Tea [Auteur]
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Wagner, Tobias [Auteur]
Technische Universität Dortmund [Dortmund] [TU]
Machine Learning and Optimisation [TAO]
Brockhoff, Dimo [Auteur]
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Hansen, Nikolaus [Auteur]
Machine Learning and Optimisation [TAO]
Tušar, Dejan [Auteur]
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Tušar, Tea [Auteur]
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Wagner, Tobias [Auteur]
Technische Universität Dortmund [Dortmund] [TU]
Conference title :
GECCO 2016 - Genetic and Evolutionary Computation Conference
City :
Denver, CO
Country :
Etats-Unis d'Amérique
Start date of the conference :
2016-07-20
Book title :
GECCO '16 Companion Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion
Publisher :
ACM
English keyword(s) :
Black-box optimization
Bi-objective optimization
Benchmarking
Bi-objective optimization
Benchmarking
HAL domain(s) :
Informatique [cs]/Réseau de neurones [cs.NE]
Mathématiques [math]/Optimisation et contrôle [math.OC]
Mathématiques [math]/Optimisation et contrôle [math.OC]
English abstract : [en]
In this paper, we benchmark the Regularity Model-Based Multiobjective Estimation of Distribution Algorithm (RM-MEDA) of Zhang et al. on the bi-objective bbob-biobj test suite of the Comparing Continuous Optimizers (COCO) ...
Show more >In this paper, we benchmark the Regularity Model-Based Multiobjective Estimation of Distribution Algorithm (RM-MEDA) of Zhang et al. on the bi-objective bbob-biobj test suite of the Comparing Continuous Optimizers (COCO) platform. It turns out that, starting from about 200 times dimension many function evaluations, RM-MEDA shows a linear increase in the solved hypervolume-based target values with time until a stagnation of the performance occurs rather quickly on all problems. The final percentage of solved hy-pervolume targets seems to decrease with the problem dimension .Show less >
Show more >In this paper, we benchmark the Regularity Model-Based Multiobjective Estimation of Distribution Algorithm (RM-MEDA) of Zhang et al. on the bi-objective bbob-biobj test suite of the Comparing Continuous Optimizers (COCO) platform. It turns out that, starting from about 200 times dimension many function evaluations, RM-MEDA shows a linear increase in the solved hypervolume-based target values with time until a stagnation of the performance occurs rather quickly on all problems. The final percentage of solved hy-pervolume targets seems to decrease with the problem dimension .Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
ANR Project :
Collections :
Source :
Files
- https://hal.inria.fr/hal-01435449/document
- Open access
- Access the document
- https://hal.inria.fr/hal-01435449/document
- Open access
- Access the document
- https://hal.inria.fr/hal-01435449/document
- Open access
- Access the document
- document
- Open access
- Access the document
- wk0810-auger-RM-MEDA-authorversion.pdf
- Open access
- Access the document
- wk0810-auger-RM-MEDA-authorversion.pdf
- Open access
- Access the document