Hybrid Recommender System based on Autoencoders
Type de document :
Communication dans un congrès avec actes
DOI :
Titre :
Hybrid Recommender System based on Autoencoders
Auteur(s) :
Strub, Florian [Auteur]
Sequential Learning [SEQUEL]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Gaudel, Romaric [Auteur]
Sequential Learning [SEQUEL]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Mary, Jérémie [Auteur]
Sequential Learning [SEQUEL]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Sequential Learning [SEQUEL]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Gaudel, Romaric [Auteur]
Sequential Learning [SEQUEL]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Mary, Jérémie [Auteur]
Sequential Learning [SEQUEL]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Titre de la manifestation scientifique :
the 1st Workshop on Deep Learning for Recommender Systems
Ville :
Boston
Pays :
Etats-Unis d'Amérique
Date de début de la manifestation scientifique :
2016-09-15
Date de publication :
2016
Mot(s)-clé(s) en anglais :
Hybrid Recommender System
Autoencoder
Autoencoder
Discipline(s) HAL :
Informatique [cs]/Apprentissage [cs.LG]
Résumé en anglais : [en]
A standard model for Recommender Systems is the Matrix Completion setting: given partially known matrix of ratings given by users (rows) to items (columns), infer the unknown ratings. In the last decades, few attempts where ...
Lire la suite >A standard model for Recommender Systems is the Matrix Completion setting: given partially known matrix of ratings given by users (rows) to items (columns), infer the unknown ratings. In the last decades, few attempts where done to handle that objective with Neural Networks, but recently an architecture based on Autoencoders proved to be a promising approach. In current paper, we enhanced that architecture (i) by using a loss function adapted to input data with missing values, and (ii) by incorporating side information. The experiments demonstrate that while side information only slightly improve the test error averaged on all users/items, it has more impact on cold users/items.Lire moins >
Lire la suite >A standard model for Recommender Systems is the Matrix Completion setting: given partially known matrix of ratings given by users (rows) to items (columns), infer the unknown ratings. In the last decades, few attempts where done to handle that objective with Neural Networks, but recently an architecture based on Autoencoders proved to be a promising approach. In current paper, we enhanced that architecture (i) by using a loss function adapted to input data with missing values, and (ii) by incorporating side information. The experiments demonstrate that while side information only slightly improve the test error averaged on all users/items, it has more impact on cold users/items.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- https://hal.inria.fr/hal-01336912v2/document
- Accès libre
- Accéder au document
- http://arxiv.org/pdf/1606.07659
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-01336912v2/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-01336912v2/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- AutoEnc.pdf
- Accès libre
- Accéder au document
- 1606.07659
- Accès libre
- Accéder au document