Supervision of time-frequency features ...
Type de document :
Autre communication scientifique (congrès sans actes - poster - séminaire...): Communication dans un congrès avec actes
Titre :
Supervision of time-frequency features selection in EEG signals by a human expert for brain–computer interfacing based on motor imagery
Auteur(s) :
Duprès, Alban [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Cabestaing, Francois [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Rouillard, Jose [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Cabestaing, Francois [Auteur]

Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Rouillard, Jose [Auteur]

Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Titre de la manifestation scientifique :
Systems, Man, and Cybernetics (SMC)
Ville :
Budapest
Pays :
Hongrie
Date de début de la manifestation scientifique :
2016-10-09
Mot(s)-clé(s) en anglais :
brain–computer interface
motor imagery
EEG signal processing
sparse feature set
feature selection
human expertise
motor imagery
EEG signal processing
sparse feature set
feature selection
human expertise
Discipline(s) HAL :
Sciences de l'ingénieur [physics]/Traitement du signal et de l'image [eess.SP]
Résumé en anglais : [en]
In the context of brain–computer interfacing based on motor imagery, we propose a method which allows an expert to select manually time-frequency features. This selection is performed specifically for each subject, by ...
Lire la suite >In the context of brain–computer interfacing based on motor imagery, we propose a method which allows an expert to select manually time-frequency features. This selection is performed specifically for each subject, by analysing a set of curves that emphasize differences of brain activity recorded from electroencephalographic signals during the execution of various motor imagery tasks. We will show that expert knowledge is very valuable to supervise the selection of a sparse set of significant time-frequency features. Features selection is performed through a graphical user interface to allow an easy access to experts with no specific programming skills. In this paper, we compare our method with three fully-automatic features selection methods, using dataset 2A of BCI competition IV. Results are better for five of the nine subjects compared to the best competing method.Lire moins >
Lire la suite >In the context of brain–computer interfacing based on motor imagery, we propose a method which allows an expert to select manually time-frequency features. This selection is performed specifically for each subject, by analysing a set of curves that emphasize differences of brain activity recorded from electroencephalographic signals during the execution of various motor imagery tasks. We will show that expert knowledge is very valuable to supervise the selection of a sparse set of significant time-frequency features. Features selection is performed through a graphical user interface to allow an easy access to experts with no specific programming skills. In this paper, we compare our method with three fully-automatic features selection methods, using dataset 2A of BCI competition IV. Results are better for five of the nine subjects compared to the best competing method.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- https://hal.archives-ouvertes.fr/hal-01394149/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-01394149/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-01394149/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- 16smcFinalVersion.pdf
- Accès libre
- Accéder au document