Multi-objective Local Search Based on ...
Type de document :
Communication dans un congrès avec actes
Titre :
Multi-objective Local Search Based on Decomposition
Auteur(s) :
Derbel, Bilel [Auteur]
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Liefooghe, Arnaud [Auteur]
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Zhang, Qingfu [Auteur]
City University of Hong Kong [Hong Kong] [CUHK]
Aguirre, Hernan [Auteur]
Faculty of Engineering [Nagano]
Tanaka, Kiyoshi [Auteur]
Faculty of Engineering [Nagano]

Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Liefooghe, Arnaud [Auteur]

Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Zhang, Qingfu [Auteur]
City University of Hong Kong [Hong Kong] [CUHK]
Aguirre, Hernan [Auteur]
Faculty of Engineering [Nagano]
Tanaka, Kiyoshi [Auteur]
Faculty of Engineering [Nagano]
Titre de la manifestation scientifique :
International Conference on Parallel Problem Solving from Nature (PPSN 2016)
Ville :
Edinburgh
Pays :
Royaume-Uni
Date de début de la manifestation scientifique :
2016
Titre de la revue :
Lecture Notes in Computer Science
Date de publication :
2016
Discipline(s) HAL :
Computer Science [cs]/Operations Research [math.OC]
Mathématiques [math]/Optimisation et contrôle [math.OC]
Mathématiques [math]/Optimisation et contrôle [math.OC]
Résumé en anglais : [en]
It is generally believed that Local search (Ls) should be used as a basic tool in multi-objective evolutionary computation for combi-natorial optimization. However, not much effort has been made to investigate how to ...
Lire la suite >It is generally believed that Local search (Ls) should be used as a basic tool in multi-objective evolutionary computation for combi-natorial optimization. However, not much effort has been made to investigate how to efficiently use Ls in multi-objective evolutionary computation algorithms. In this paper, we study some issues in the use of cooperative scalarizing local search approaches for decomposition-based multi-objective combinatorial optimization. We propose and study multiple move strategies in the Moea/d framework. By extensive experiments on a new set of bi-objective traveling salesman problems with tunable correlated objectives, we analyze these policies with different Moea/d parameters. Our empirical study has shed some insights about the impact of the Ls move strategy on the anytime performance of the algorithm.Lire moins >
Lire la suite >It is generally believed that Local search (Ls) should be used as a basic tool in multi-objective evolutionary computation for combi-natorial optimization. However, not much effort has been made to investigate how to efficiently use Ls in multi-objective evolutionary computation algorithms. In this paper, we study some issues in the use of cooperative scalarizing local search approaches for decomposition-based multi-objective combinatorial optimization. We propose and study multiple move strategies in the Moea/d framework. By extensive experiments on a new set of bi-objective traveling salesman problems with tunable correlated objectives, we analyze these policies with different Moea/d parameters. Our empirical study has shed some insights about the impact of the Ls move strategy on the anytime performance of the algorithm.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- https://hal.archives-ouvertes.fr/hal-01380632/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-01380632/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-01380632/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- derbel.ppsn2016.pdf
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- derbel.ppsn2016.pdf
- Accès libre
- Accéder au document