Improved Learning Complexity in Combinatorial ...
Type de document :
Communication dans un congrès avec actes
Titre :
Improved Learning Complexity in Combinatorial Pure Exploration Bandits
Auteur(s) :
Gabillon, Victor [Auteur]
Queensland University of Technology [Brisbane] [QUT]
Lazaric, Alessandro [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Sequential Learning [SEQUEL]
Ghavamzadeh, Mohammad [Auteur]
Sequential Learning [SEQUEL]
Adobe Systems Inc. [Adobe Advanced Technology Labs]
Ortner, Ronald [Auteur]
Montanuniversität Leoben [MUL]
Bartlett, Peter [Auteur]
Queensland University of Technology [Brisbane] [QUT]
Queensland University of Technology [Brisbane] [QUT]
Lazaric, Alessandro [Auteur]

Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Sequential Learning [SEQUEL]
Ghavamzadeh, Mohammad [Auteur]
Sequential Learning [SEQUEL]
Adobe Systems Inc. [Adobe Advanced Technology Labs]
Ortner, Ronald [Auteur]
Montanuniversität Leoben [MUL]
Bartlett, Peter [Auteur]
Queensland University of Technology [Brisbane] [QUT]
Titre de la manifestation scientifique :
Proceedings of the 19th International Conference on Artificial Intelligence (AISTATS)
Ville :
Cadiz
Pays :
Espagne
Date de début de la manifestation scientifique :
2016-05
Date de publication :
2016
Discipline(s) HAL :
Statistiques [stat]/Machine Learning [stat.ML]
Résumé en anglais : [en]
We study the problem of combinatorial pure exploration in the stochastic multi-armed bandit problem. We first construct a new measure of complexity that provably characterizes the learning performance of the algorithms we ...
Lire la suite >We study the problem of combinatorial pure exploration in the stochastic multi-armed bandit problem. We first construct a new measure of complexity that provably characterizes the learning performance of the algorithms we propose for the fixed confidence and the fixed budget setting. We show that this complexity is never higher than the one in existing work and illustrate a number of configurations in which it can be significantly smaller. While in general this improvement comes at the cost of increased computational complexity, we provide a series of examples , including a planning problem, where this extra cost is not significant.Lire moins >
Lire la suite >We study the problem of combinatorial pure exploration in the stochastic multi-armed bandit problem. We first construct a new measure of complexity that provably characterizes the learning performance of the algorithms we propose for the fixed confidence and the fixed budget setting. We show that this complexity is never higher than the one in existing work and illustrate a number of configurations in which it can be significantly smaller. While in general this improvement comes at the cost of increased computational complexity, we provide a series of examples , including a planning problem, where this extra cost is not significant.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- https://hal.inria.fr/hal-01322198/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-01322198/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-01322198/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- AISTATS_full_CR.pdf
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- AISTATS_full_CR.pdf
- Accès libre
- Accéder au document