• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Automatised selection of load paths to ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Article dans une revue scientifique
DOI :
10.1007/s00466-016-1290-2
Title :
Automatised selection of load paths to construct reduced-order models in computational damage micromechanics: from dissipation-driven random selection to Bayesian optimization
Author(s) :
Goury, Olivier [Auteur]
Deformable Robots Simulation Team [DEFROST ]
Amsallem, David [Auteur]
Bordas, Stéphane Pierre-Alain [Auteur]
University of Luxembourg [Luxembourg]
Liu, Wing Kam [Auteur]
Northwestern University [Evanston]
Kerfriden, Pierre [Auteur correspondant]
Journal title :
Computational Mechanics
Pages :
213–234
Publisher :
Springer Verlag
Publication date :
2016-08
ISSN :
0178-7675
English keyword(s) :
damage mechanics
multiscale
Hyperreduction
model order reduction
computational homogenisation
reduced basis
HAL domain(s) :
Physique [physics]/Mécanique [physics]/Mécanique des structures [physics.class-ph]
English abstract : [en]
In this paper, we present new reliable model order reduction strategies for computational micromechanics. The difficulties rely mainly upon the high dimensionality of the parameter space represented by any load path applied ...
Show more >
In this paper, we present new reliable model order reduction strategies for computational micromechanics. The difficulties rely mainly upon the high dimensionality of the parameter space represented by any load path applied onto the representative volume element (RVE). We take special care of the challenge of selecting an exhaustive snapshot set. This is treated by first using a random sampling of energy dissipating load paths and then in a more advanced way using Bayesian optimization associated with an interlocked division of the parameter space. Results show that we can insure the selection of an exhaustive snapshot set from which a reliable reduced-order model (ROM) can be built.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-01302831/document
  • Open access
  • Access the document
Thumbnail
  • https://link.springer.com/content/pdf/10.1007%2Fs00466-016-1290-2.pdf
  • Open access
  • Access the document
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-01302831/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-01302831/document
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017