• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Stability Analysis for Impulsive Systems: ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Rapport de recherche
Title :
Stability Analysis for Impulsive Systems: 2D Vector Lyapunov Function Approach
Author(s) :
Ríos, Hector [Auteur]
Non-Asymptotic estimation for online systems [NON-A]
HETEL, Laurentiu [Auteur] refId
Systèmes Non Linéaires et à Retards [SyNeR]
Efimov, Denis [Auteur] refId
Non-Asymptotic estimation for online systems [NON-A]
Institution :
Inria Lille - Nord Europe
Publication date :
2016-02-01
English keyword(s) :
Impulsive systems
Exponential stability
2D Systems
HAL domain(s) :
Sciences de l'ingénieur [physics]/Automatique / Robotique
English abstract : [en]
This paper contributes to the stability analysis for impulsive dynamical systems based on a vector Lyapunov function and its divergence operator. The new method relies on a 2D time domain representation. The result is ...
Show more >
This paper contributes to the stability analysis for impulsive dynamical systems based on a vector Lyapunov function and its divergence operator. The new method relies on a 2D time domain representation. The result is illustrated for the exponential stability of linear impulsive systems based on LMIs. The obtained results provide some notions of minimum and maximum dwell-time. Some examples illustrate the feasibility of the proposed approach.Show less >
Language :
Anglais
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.inria.fr/hal-01280321/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-01280321/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-01280321/document
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017