What population reveals about individual ...
Type de document :
Article dans une revue scientifique: Article original
Titre :
What population reveals about individual cell identity: Single-cell parameter estimation of models of gene expression in yeast
Auteur(s) :
Llamosi, Artémis [Auteur]
Matière et Systèmes Complexes [MSC]
Computational systems biology and optimization [Lifeware]
Gonzalez, Andres [Auteur]
Dipartimento di Informatica e Sistemistica [DIS]
Versari, Cristian [Auteur]
BioComputing
Cinquemani, Eugenio [Auteur]
Modeling, simulation, measurement, and control of bacterial regulatory networks [IBIS]
Ferrari-Trecate, Giancarlo [Auteur]
Dipartimento di Informatica e Sistemistica [DIS]
Hersen, Pascal [Auteur]
Mechanobiology Institute [Singapore] [MBI]
Matière et Systèmes Complexes [MSC]
Batt, Gregory [Auteur]
Computational systems biology and optimization [Lifeware]
Matière et Systèmes Complexes [MSC]
Computational systems biology and optimization [Lifeware]
Gonzalez, Andres [Auteur]
Dipartimento di Informatica e Sistemistica [DIS]
Versari, Cristian [Auteur]

BioComputing
Cinquemani, Eugenio [Auteur]
Modeling, simulation, measurement, and control of bacterial regulatory networks [IBIS]
Ferrari-Trecate, Giancarlo [Auteur]
Dipartimento di Informatica e Sistemistica [DIS]
Hersen, Pascal [Auteur]
Mechanobiology Institute [Singapore] [MBI]
Matière et Systèmes Complexes [MSC]
Batt, Gregory [Auteur]
Computational systems biology and optimization [Lifeware]
Titre de la revue :
PLoS Computational Biology
Pagination :
e1004706
Éditeur :
PLOS
Date de publication :
2016-02-09
ISSN :
1553-734X
Discipline(s) HAL :
Informatique [cs]/Bio-informatique [q-bio.QM]
Résumé en anglais : [en]
Significant cell-to-cell heterogeneity is ubiquitously observed in isogenic cell populations. Consequently, parameters of models of intracellular processes, usually fitted to population-averaged data, should rather be ...
Lire la suite >Significant cell-to-cell heterogeneity is ubiquitously observed in isogenic cell populations. Consequently, parameters of models of intracellular processes, usually fitted to population-averaged data, should rather be fitted to individual cells to obtain a population of models of similar but non-identical individuals. Here, we propose a quantitative modeling framework that attributes specific parameter values to single cells for a standard model of gene expression. We combine high quality single-cell measurements of the response of yeast cells to repeated hyperosmotic shocks and state-of-the-art statistical inference approaches for mixed-effects models to infer multidimensional parameter distributions describing the population, and then derive specific parameters for individual cells. The analysis of single-cell parameters shows that single-cell identity (e.g. gene expression dynamics, cell size, growth rate, mother-daughter relationships) is, at least partially, captured by the parameter values of gene expression models (e.g. rates of transcription, translation and degradation). Our approach shows how to use the rich information contained into longitudinal single-cell data to infer parameters that can faithfully represent single-cell identity.Lire moins >
Lire la suite >Significant cell-to-cell heterogeneity is ubiquitously observed in isogenic cell populations. Consequently, parameters of models of intracellular processes, usually fitted to population-averaged data, should rather be fitted to individual cells to obtain a population of models of similar but non-identical individuals. Here, we propose a quantitative modeling framework that attributes specific parameter values to single cells for a standard model of gene expression. We combine high quality single-cell measurements of the response of yeast cells to repeated hyperosmotic shocks and state-of-the-art statistical inference approaches for mixed-effects models to infer multidimensional parameter distributions describing the population, and then derive specific parameters for individual cells. The analysis of single-cell parameters shows that single-cell identity (e.g. gene expression dynamics, cell size, growth rate, mother-daughter relationships) is, at least partially, captured by the parameter values of gene expression models (e.g. rates of transcription, translation and degradation). Our approach shows how to use the rich information contained into longitudinal single-cell data to infer parameters that can faithfully represent single-cell identity.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Projet ANR :
Collections :
Source :
Fichiers
- https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1004706&type=printable
- Accès libre
- Accéder au document
- Accès libre
- Accéder au document