Environmental Design Shapes Perceptual-motor ...
Type de document :
Article dans une revue scientifique: Article original
DOI :
Titre :
Environmental Design Shapes Perceptual-motor Exploration, Learning, and Transfer in Climbing
Auteur(s) :
Seifert, Ludovic [Auteur]
Centre d’études des transformations des activités physiques et sportives [CETAPS]
Dominic, Orth [Auteur]
Centre d’études des transformations des activités physiques et sportives [CETAPS]
Boulanger, Jérémie [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Davids, Keith [Auteur]
Centre d’études des transformations des activités physiques et sportives [CETAPS]
Dominic, Orth [Auteur]
Centre d’études des transformations des activités physiques et sportives [CETAPS]
Boulanger, Jérémie [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Davids, Keith [Auteur]
Titre de la revue :
Frontiers in Psychology
Éditeur :
Frontiers Media
Date de publication :
2015-11-25
Mot(s)-clé(s) en anglais :
coordination dynamics
motor learning
meta-stability
exploration
affordances
motor learning
meta-stability
exploration
affordances
Discipline(s) HAL :
Statistiques [stat]/Applications [stat.AP]
Sciences de l'Homme et Société/Psychologie
Sciences de l'Homme et Société/Psychologie
Résumé en anglais : [en]
This study investigated how environmental design shapes perceptual-motor exploration, when meta-stable regions of performance are created. Here, we examined how creating meta-stable regions of performance could destabilize ...
Lire la suite >This study investigated how environmental design shapes perceptual-motor exploration, when meta-stable regions of performance are created. Here, we examined how creating meta-stable regions of performance could destabilize pre-existing skills, favoring greater exploration of performance environments, exemplified in this study by climbing surfaces. In this investigation we manipulated hold orientations on an indoor climbing wall to examine how nine climbers explored, learned, and transferred various trunk-rolling motion patterns and hand grasping movements. The learning protocol consisted of four sessions, in which climbers randomly ascended three different routes, as fluently as possible. All three routes were 10.3 m in height and composed of 20 hand-holds at the same locations on an artificial climbing wall; only hold orientations were altered: (i) a horizontal-edge route was designed to afford horizontal hold grasping, (ii) a vertical-edge route afforded vertical hold grasping, and (iii), a double-edge route was designed to afford both horizontal and vertical hold grasping. As a meta-stable condition of performance invite an individual to both exploit his pre-existing behavioral repertoire (i.e., horizontal hold grasping pattern and trunk face to the wall) and explore new behaviors (i.e., vertical hold grasping and trunk side to the wall), it was hypothesized that the double-edge route characterized a meta-stable region of performance. Data were collected from inertial measurement units located on the neck and hip of each climber, allowing us to compute rolling motion referenced to the artificial climbing wall. Information on ascent duration, the number of exploratory and performatory movements for locating hand-holds, and hip path was also observed in video footage from a frontal camera worn by participants. Climbing fluency was assessed by calculating geometric index of entropy. Results showed that the meta-stable condition of performance may have afforded utilization of more adaptive climbing behaviors (expressed in higher values for range and variability of trunk rolling motion and greater number of exploratory movements). Findings indicated how climbers learn to explore and, subsequently, use effective exploratory search strategies that can facilitate transfer of learning to performance in novel climbing environments.Lire moins >
Lire la suite >This study investigated how environmental design shapes perceptual-motor exploration, when meta-stable regions of performance are created. Here, we examined how creating meta-stable regions of performance could destabilize pre-existing skills, favoring greater exploration of performance environments, exemplified in this study by climbing surfaces. In this investigation we manipulated hold orientations on an indoor climbing wall to examine how nine climbers explored, learned, and transferred various trunk-rolling motion patterns and hand grasping movements. The learning protocol consisted of four sessions, in which climbers randomly ascended three different routes, as fluently as possible. All three routes were 10.3 m in height and composed of 20 hand-holds at the same locations on an artificial climbing wall; only hold orientations were altered: (i) a horizontal-edge route was designed to afford horizontal hold grasping, (ii) a vertical-edge route afforded vertical hold grasping, and (iii), a double-edge route was designed to afford both horizontal and vertical hold grasping. As a meta-stable condition of performance invite an individual to both exploit his pre-existing behavioral repertoire (i.e., horizontal hold grasping pattern and trunk face to the wall) and explore new behaviors (i.e., vertical hold grasping and trunk side to the wall), it was hypothesized that the double-edge route characterized a meta-stable region of performance. Data were collected from inertial measurement units located on the neck and hip of each climber, allowing us to compute rolling motion referenced to the artificial climbing wall. Information on ascent duration, the number of exploratory and performatory movements for locating hand-holds, and hip path was also observed in video footage from a frontal camera worn by participants. Climbing fluency was assessed by calculating geometric index of entropy. Results showed that the meta-stable condition of performance may have afforded utilization of more adaptive climbing behaviors (expressed in higher values for range and variability of trunk rolling motion and greater number of exploratory movements). Findings indicated how climbers learn to explore and, subsequently, use effective exploratory search strategies that can facilitate transfer of learning to performance in novel climbing environments.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- https://www.frontiersin.org/articles/10.3389/fpsyg.2015.01819/pdf
- Accès libre
- Accéder au document
- Accès libre
- Accéder au document