Optimism in Active Learning with Gaussian ...
Type de document :
Communication dans un congrès avec actes
Titre :
Optimism in Active Learning with Gaussian Processes
Auteur(s) :
Collet, Timothé [Auteur]
MAchine Learning and Interactive Systems [MALIS]
Georgia Tech Lorraine [Metz]
Pietquin, Olivier [Auteur]
Université de Lille, Sciences et Technologies
Institut universitaire de France [IUF]
Sequential Learning [SEQUEL]
MAchine Learning and Interactive Systems [MALIS]
Georgia Tech Lorraine [Metz]
Pietquin, Olivier [Auteur]
Université de Lille, Sciences et Technologies
Institut universitaire de France [IUF]
Sequential Learning [SEQUEL]
Titre de la manifestation scientifique :
22nd International Conference on Neural Information Processing (ICONIP2015)
Ville :
Istanbul
Pays :
Turquie
Date de début de la manifestation scientifique :
2015-11-09
Mot(s)-clé(s) en anglais :
Active Learning
Classifiaction
Multi-Armed Bandits
Classifiaction
Multi-Armed Bandits
Discipline(s) HAL :
Informatique [cs]/Apprentissage [cs.LG]
Résumé en anglais : [en]
In the context of Active Learning for classification, the classification error depends on the joint distribution of samples and their labels which is initially unknown. The minimization of this error requires estimating ...
Lire la suite >In the context of Active Learning for classification, the classification error depends on the joint distribution of samples and their labels which is initially unknown. The minimization of this error requires estimating this distribution. Online estimation of this distribution involves a trade-off between exploration and exploitation. This is a common problem in machine learning for which multi-armed bandit theory, building upon Optimism in the Face of Uncertainty, has been proven very efficient these last years. We introduce two novel algorithms that use Optimism in the Face of Uncertainty along with Gaussian Processes for the Active Learning problem. The evaluation lead on real world datasets shows that these new algorithms compare positively to state-of-the-art methods.Lire moins >
Lire la suite >In the context of Active Learning for classification, the classification error depends on the joint distribution of samples and their labels which is initially unknown. The minimization of this error requires estimating this distribution. Online estimation of this distribution involves a trade-off between exploration and exploitation. This is a common problem in machine learning for which multi-armed bandit theory, building upon Optimism in the Face of Uncertainty, has been proven very efficient these last years. We introduce two novel algorithms that use Optimism in the Face of Uncertainty along with Gaussian Processes for the Active Learning problem. The evaluation lead on real world datasets shows that these new algorithms compare positively to state-of-the-art methods.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- https://hal.inria.fr/hal-01225826/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-01225826/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-01225826/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-01225826/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- ICONIP_2015_TCOP.pdf
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- ICONIP_2015_TCOP.pdf
- Accès libre
- Accéder au document