• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

First-order regret bounds for combinatorial ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Communication dans un congrès avec actes
Title :
First-order regret bounds for combinatorial semi-bandits
Author(s) :
Neu, Gergely [Auteur]
Sequential Learning [SEQUEL]
Conference title :
Proceedings of the 28th Annual Conference on Learning Theory (COLT)
City :
Paris
Country :
France
Start date of the conference :
2015-07-03
Journal title :
JMLR Workshop and Conference Proceedings
Publication date :
2015
English keyword(s) :
online learning
online combinatorial optimization
semi-bandit feedback
follow the perturbed leader
improvements for small losses
first-order bounds
HAL domain(s) :
Informatique [cs]/Apprentissage [cs.LG]
English abstract : [en]
We consider the problem of online combinatorial optimization under semi-bandit feedback, where a learner has to repeatedly pick actions from a combinatorial decision set in order to minimize the total losses associated ...
Show more >
We consider the problem of online combinatorial optimization under semi-bandit feedback, where a learner has to repeatedly pick actions from a combinatorial decision set in order to minimize the total losses associated with its decisions. After making each decision, the learner observes the losses associated with its action, but not other losses. For this problem, there are several learning algorithms that guarantee that the learner's expected regret grows as O(√ T) with the number of rounds T. In this paper, we propose an algorithm that improves this scaling to O(√ L * T), where L * T is the total loss of the best action. Our algorithm is among the first to achieve such guarantees in a partial-feedback scheme, and the first one to do so in a combinatorial setting.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.inria.fr/hal-01215001/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-01215001/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-01215001/document
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017