Sparse Multi-task Reinforcement Learning
Type de document :
Communication dans un congrès avec actes
Titre :
Sparse Multi-task Reinforcement Learning
Auteur(s) :
Calandriello, Daniele [Auteur]
Laboratoire d'Informatique Fondamentale de Lille [LIFL]
Sequential Learning [SEQUEL]
Lazaric, Alessandro [Auteur]
Laboratoire d'Informatique Fondamentale de Lille [LIFL]
Sequential Learning [SEQUEL]
Restelli, Marcello [Auteur]
Laboratoire d'Informatique Fondamentale de Lille [LIFL]
Sequential Learning [SEQUEL]
Lazaric, Alessandro [Auteur]

Laboratoire d'Informatique Fondamentale de Lille [LIFL]
Sequential Learning [SEQUEL]
Restelli, Marcello [Auteur]
Titre de la manifestation scientifique :
NIPS - Advances in Neural Information Processing Systems 26
Ville :
Montreal
Pays :
Canada
Date de début de la manifestation scientifique :
2014-12
Date de publication :
2014
Discipline(s) HAL :
Statistiques [stat]/Machine Learning [stat.ML]
Résumé en anglais : [en]
In multi-task reinforcement learning (MTRL), the objective is to simultaneously learn multiple tasks and exploit their similarity to improve the performance w.r.t.\ single-task learning. In this paper we investigate the ...
Lire la suite >In multi-task reinforcement learning (MTRL), the objective is to simultaneously learn multiple tasks and exploit their similarity to improve the performance w.r.t.\ single-task learning. In this paper we investigate the case when all the tasks can be accurately represented in a linear approximation space using the same small subset of the original (large) set of features. This is equivalent to assuming that the weight vectors of the task value functions are \textit{jointly sparse}, i.e., the set of their non-zero components is small and it is shared across tasks. Building on existing results in multi-task regression, we develop two multi-task extensions of the fitted $Q$-iteration algorithm. While the first algorithm assumes that the tasks are jointly sparse in the given representation, the second one learns a transformation of the features in the attempt of finding a more sparse representation. For both algorithms we provide a sample complexity analysis and numerical simulations.Lire moins >
Lire la suite >In multi-task reinforcement learning (MTRL), the objective is to simultaneously learn multiple tasks and exploit their similarity to improve the performance w.r.t.\ single-task learning. In this paper we investigate the case when all the tasks can be accurately represented in a linear approximation space using the same small subset of the original (large) set of features. This is equivalent to assuming that the weight vectors of the task value functions are \textit{jointly sparse}, i.e., the set of their non-zero components is small and it is shared across tasks. Building on existing results in multi-task regression, we develop two multi-task extensions of the fitted $Q$-iteration algorithm. While the first algorithm assumes that the tasks are jointly sparse in the given representation, the second one learns a transformation of the features in the attempt of finding a more sparse representation. For both algorithms we provide a sample complexity analysis and numerical simulations.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- https://hal.inria.fr/hal-01073513/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-01073513/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- sparse_mtrl_tech.pdf
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- sparse_mtrl_tech.pdf
- Accès libre
- Accéder au document