Shake them all! Rethinking Selection and ...
Type de document :
Communication dans un congrès avec actes
Titre :
Shake them all! Rethinking Selection and Replacement in MOEA/D
Auteur(s) :
Marquet, Gauvain [Auteur]
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Derbel, Bilel [Auteur]
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Liefooghe, Arnaud [Auteur]
Laboratoire d'Informatique Fondamentale de Lille [LIFL]
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Talbi, El-Ghazali [Auteur]
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Derbel, Bilel [Auteur]

Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Liefooghe, Arnaud [Auteur]

Laboratoire d'Informatique Fondamentale de Lille [LIFL]
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Talbi, El-Ghazali [Auteur]

Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Titre de la manifestation scientifique :
Parallel Problem Solving from Nature (PPSN)
Ville :
Ljubljana
Pays :
Slovénie
Date de début de la manifestation scientifique :
2014-09-11
Éditeur :
LNCS
Date de publication :
2014-09-16
Discipline(s) HAL :
Computer Science [cs]/Operations Research [math.OC]
Informatique [cs]/Algorithme et structure de données [cs.DS]
Informatique [cs]/Algorithme et structure de données [cs.DS]
Résumé en anglais : [en]
We build upon the previous efforts to enhance the search ability of Moead (a decomposition-based algorithm), by investigating the idea of evolving the whole population simultaneously at once. We thereby propose new alternative ...
Lire la suite >We build upon the previous efforts to enhance the search ability of Moead (a decomposition-based algorithm), by investigating the idea of evolving the whole population simultaneously at once. We thereby propose new alternative selection and replacement strategies that can be combined in different ways within a generic and problem-independent framework. To assess the performance of our strategies, we conduct a comprehensive experimental study on bi-objective combinatorial optimization problems. More precisely, we consider ρMNK-landscapes and knapsack problems as a benchmark, and experiment a wide range of parameter configurations for Moead and its variants. Our analysis reveals the effectiveness of our strategies and their robustness to parameter settings. In particular, substantial improvements are obtained compared to the conventional Moead.Lire moins >
Lire la suite >We build upon the previous efforts to enhance the search ability of Moead (a decomposition-based algorithm), by investigating the idea of evolving the whole population simultaneously at once. We thereby propose new alternative selection and replacement strategies that can be combined in different ways within a generic and problem-independent framework. To assess the performance of our strategies, we conduct a comprehensive experimental study on bi-objective combinatorial optimization problems. More precisely, we consider ρMNK-landscapes and knapsack problems as a benchmark, and experiment a wide range of parameter configurations for Moead and its variants. Our analysis reveals the effectiveness of our strategies and their robustness to parameter settings. In particular, substantial improvements are obtained compared to the conventional Moead.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- https://hal.inria.fr/hal-00987800/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-00987800/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- cmod.pdf
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- cmod.pdf
- Accès libre
- Accéder au document