Learning a common dictionary over a sensor network
Type de document :
Communication dans un congrès avec actes
Titre :
Learning a common dictionary over a sensor network
Auteur(s) :
Chainais, Pierre [Auteur]
Sequential Learning [SEQUEL]
Centrale Lille
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Richard, Cédric [Auteur]
Joseph Louis LAGRANGE [LAGRANGE]

Sequential Learning [SEQUEL]
Centrale Lille
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Richard, Cédric [Auteur]
Joseph Louis LAGRANGE [LAGRANGE]
Titre de la manifestation scientifique :
CAMSAP 2013
Ville :
Saint-Martin
Pays :
France
Date de début de la manifestation scientifique :
2013-12-15
Date de publication :
2013-12-15
Mot(s)-clé(s) en anglais :
block coordinate descent
dictionary learning
sparse coding
distributed estimation
diffusion
matrix factorization
adaptive networks
block coordinate descent.
dictionary learning
sparse coding
distributed estimation
diffusion
matrix factorization
adaptive networks
block coordinate descent.
Discipline(s) HAL :
Sciences de l'ingénieur [physics]/Traitement du signal et de l'image [eess.SP]
Informatique [cs]/Traitement du signal et de l'image [eess.SP]
Informatique [cs]/Apprentissage [cs.LG]
Informatique [cs]/Traitement du signal et de l'image [eess.SP]
Informatique [cs]/Apprentissage [cs.LG]
Résumé en anglais : [en]
We consider the problem of distributed dictionary learning, where a set of nodes is required to collectively learn a common dictionary from noisy measurements. This approach may be useful in several contexts including ...
Lire la suite >We consider the problem of distributed dictionary learning, where a set of nodes is required to collectively learn a common dictionary from noisy measurements. This approach may be useful in several contexts including sensor networks. Diffusion cooperation schemes have been proposed to solve the distributed linear regression problem. In this work we focus on a diffusion-based adaptive dictionary learning strategy: each node records independent observations and cooperates with its neighbors by sharing its local dictionary. The resulting algorithm corresponds to a distributed alternate optimization. Beyond dictionary learning, this strategy could be adapted to many matrix factorization problems in various settings. We illustrate its efficiency on some numerical experiments.Lire moins >
Lire la suite >We consider the problem of distributed dictionary learning, where a set of nodes is required to collectively learn a common dictionary from noisy measurements. This approach may be useful in several contexts including sensor networks. Diffusion cooperation schemes have been proposed to solve the distributed linear regression problem. In this work we focus on a diffusion-based adaptive dictionary learning strategy: each node records independent observations and cooperates with its neighbors by sharing its local dictionary. The resulting algorithm corresponds to a distributed alternate optimization. Beyond dictionary learning, this strategy could be adapted to many matrix factorization problems in various settings. We illustrate its efficiency on some numerical experiments.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Commentaire :
4 pages
Collections :
Source :
Fichiers
- https://hal.archives-ouvertes.fr/hal-00923742/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-00923742/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-00923742/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-00923742/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- camsap2013_DicoLearn_final.pdf
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- camsap2013_DicoLearn_final.pdf
- Accès libre
- Accéder au document