• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Acyclic edge-coloring using entropy compression
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Article dans une revue scientifique: Article original
DOI :
10.1016/j.ejc.2013.02.007
Title :
Acyclic edge-coloring using entropy compression
Author(s) :
Esperet, Louis [Auteur]
Optimisation Combinatoire [G-SCOP_OC]
Parreau, Aline [Auteur]
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Journal title :
European Journal of Combinatorics
Pages :
1019-1027
Publisher :
Elsevier
Publication date :
2013
ISSN :
0195-6698
HAL domain(s) :
Informatique [cs]/Mathématique discrète [cs.DM]
English abstract : [en]
An edge-coloring of a graph G is acyclic if it is a proper edge-coloring of G and every cycle contains at least three colors. We prove that every graph with maximum degree Delta has an acyclic edge-coloring with at most 4 ...
Show more >
An edge-coloring of a graph G is acyclic if it is a proper edge-coloring of G and every cycle contains at least three colors. We prove that every graph with maximum degree Delta has an acyclic edge-coloring with at most 4 Delta - 4 colors, improving the previous bound of 9.62 (Delta - 1). Our bound results from the analysis of a very simple randomised procedure using the so-called entropy compression method. We show that the expected running time of the procedure is O(mn Delta^2 log Delta), where n and m are the number of vertices and edges of G. Such a randomised procedure running in expected polynomial time was only known to exist in the case where at least 16 Delta colors were available. Our aim here is to make a pedagogic tutorial on how to use these ideas to analyse a broad range of graph coloring problems. As an application, also show that every graph with maximum degree Delta has a star coloring with 2 sqrt(2) Delta^{3/2} + Delta colors.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://doi.org/10.1016/j.ejc.2013.02.007
  • Open access
  • Access the document
Thumbnail
  • https://doi.org/10.1016/j.ejc.2013.02.007
  • Open access
  • Access the document
Thumbnail
  • http://arxiv.org/pdf/1206.1535
  • Open access
  • Access the document
Thumbnail
  • 1206.1535
  • Open access
  • Access the document
Université de Lille

Mentions légales
Accessibilité : non conforme
Université de Lille © 2017