Extremal Optimization Applied to Task ...
Type de document :
Communication dans un congrès avec actes
Titre :
Extremal Optimization Applied to Task Scheduling of Distributed Java Programs
Auteur(s) :
Olejnik, Richard [Auteur correspondant]
Contributions of the Data parallelism to real time [DART]
Laboratoire d'Informatique Fondamentale de Lille [LIFL]
de Falco, Ivanoe [Auteur]
Laskowski, Eryk [Auteur]
Institute of Computer Science [Warszawa]
Scafuri, Umberto [Auteur]
Tarantino, Ernesto [Auteur]
Institute of High Performance Computing and Networking [ICAR]
Tudruj, Marek [Auteur]
Polish-Japanese Institute of Information Technology [PJIIT]
Institute of Computer Science [Warszawa]

Contributions of the Data parallelism to real time [DART]
Laboratoire d'Informatique Fondamentale de Lille [LIFL]
de Falco, Ivanoe [Auteur]
Laskowski, Eryk [Auteur]
Institute of Computer Science [Warszawa]
Scafuri, Umberto [Auteur]
Tarantino, Ernesto [Auteur]
Institute of High Performance Computing and Networking [ICAR]
Tudruj, Marek [Auteur]
Polish-Japanese Institute of Information Technology [PJIIT]
Institute of Computer Science [Warszawa]
Éditeur(s) ou directeur(s) scientifique(s) :
Springer-Verlag Berlin Heidelberg
Titre de la manifestation scientifique :
EvoApplications 2011
Ville :
Turin
Pays :
Italie
Date de début de la manifestation scientifique :
2013-04-27
Titre de l’ouvrage :
Applications of Evolutionary Computation
Titre de la revue :
Lecture Notes in Computer Science
Éditeur :
Springer-Verlag Berlin Heidelberg
Date de publication :
2011
Mot(s)-clé(s) en anglais :
distributed systems
scheduling
evolutionary algorithms
scheduling
evolutionary algorithms
Discipline(s) HAL :
Informatique [cs]/Calcul parallèle, distribué et partagé [cs.DC]
Résumé en anglais : [en]
The paper presents new Java programs scheduling algorithms for execution on clusters of Java Virtual Machines (JVMs), which involve extremal optimization (EO) combined with task clustering. Two new scheduling algorithms ...
Lire la suite >The paper presents new Java programs scheduling algorithms for execution on clusters of Java Virtual Machines (JVMs), which involve extremal optimization (EO) combined with task clustering. Two new scheduling algorithms are presented and compared. The first employs task clustering to reduce an initial program graph and then applies extremal optimization to schedule the reduced program graph to system resources. The second algorithm applies task clustering only to find an initial solution which is next improved by the EO algorithm working on the initial program graph. Both algorithms are also compared to an EO algorithm which does not use the clustering approach.Lire moins >
Lire la suite >The paper presents new Java programs scheduling algorithms for execution on clusters of Java Virtual Machines (JVMs), which involve extremal optimization (EO) combined with task clustering. Two new scheduling algorithms are presented and compared. The first employs task clustering to reduce an initial program graph and then applies extremal optimization to schedule the reduced program graph to system resources. The second algorithm applies task clustering only to find an initial solution which is next improved by the EO algorithm working on the initial program graph. Both algorithms are also compared to an EO algorithm which does not use the clustering approach.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- https://api.istex.fr/ark:/67375/HCB-T4KG33C7-K/fulltext.pdf?sid=hal
- Accès libre
- Accéder au document
- https://api.istex.fr/ark:/67375/HCB-T4KG33C7-K/fulltext.pdf?sid=hal
- Accès libre
- Accéder au document
- https://api.istex.fr/ark:/67375/HCB-T4KG33C7-K/fulltext.pdf?sid=hal
- Accès libre
- Accéder au document
- https://api.istex.fr/ark:/67375/HCB-T4KG33C7-K/fulltext.pdf?sid=hal
- Accès libre
- Accéder au document
- fulltext.pdf
- Accès libre
- Accéder au document