The undirected m-Capacitated Peripatetic ...
Type de document :
Compte-rendu et recension critique d'ouvrage
Titre :
The undirected m-Capacitated Peripatetic Salesman Problem
Auteur(s) :
Duchenne, Éric [Auteur]
Laboratoire d'Automatique, de Mécanique et d'Informatique industrielles et Humaines - UMR 8201 [LAMIH]
Laporte, Gilbert [Auteur]
Laboratoire CIRRELT Université Laval Quebec [CIRRELT]
Semet, Frédéric [Auteur]
LAGIS-OSL
Laboratoire d'Automatique, de Mécanique et d'Informatique industrielles et Humaines - UMR 8201 [LAMIH]
Laporte, Gilbert [Auteur]
Laboratoire CIRRELT Université Laval Quebec [CIRRELT]
Semet, Frédéric [Auteur]

LAGIS-OSL
Titre de la revue :
European Journal of Operational Research
Pagination :
637-643
Éditeur :
Elsevier
Date de publication :
2012-01-01
ISSN :
0377-2217
Mot(s)-clé(s) en anglais :
Peripatetic Salesman Problem
Traveling Salesman Problem
Capacity
Branch-and-cut
Branch-and-price
Traveling Salesman Problem
Capacity
Branch-and-cut
Branch-and-price
Discipline(s) HAL :
Computer Science [cs]/Operations Research [math.OC]
Résumé en anglais : [en]
In the m-Capacitated Peripatetic Salesman Problem (m-CPSP) the aim is to determine m Hamiltonian cycles of minimal total cost on a graph, such that all the edges are traversed less than the value of their capacity. This ...
Lire la suite >In the m-Capacitated Peripatetic Salesman Problem (m-CPSP) the aim is to determine m Hamiltonian cycles of minimal total cost on a graph, such that all the edges are traversed less than the value of their capacity. This article introduces three formulations for the m-CPSP. Two branch-and-cut algorithms and one branch-and-price algorithm are developed. Tests performed on randomly generated and on TSPLIB Euclidean instances indicate that the branch-and-price algorithm can solve instances with more than twice the size of what is achievable with the branch-and-cut algorithms.Lire moins >
Lire la suite >In the m-Capacitated Peripatetic Salesman Problem (m-CPSP) the aim is to determine m Hamiltonian cycles of minimal total cost on a graph, such that all the edges are traversed less than the value of their capacity. This article introduces three formulations for the m-CPSP. Two branch-and-cut algorithms and one branch-and-price algorithm are developed. Tests performed on randomly generated and on TSPLIB Euclidean instances indicate that the branch-and-price algorithm can solve instances with more than twice the size of what is achievable with the branch-and-cut algorithms.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Collections :
Source :
Fichiers
- fulltext.pdf
- Accès libre
- Accéder au document