• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Approximating multi-objective scheduling problems
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Article dans une revue scientifique
DOI :
10.1016/j.cor.2012.12.001
Title :
Approximating multi-objective scheduling problems
Author(s) :
Dabia, Said [Auteur]
Department of Industrial Engineering and Innovation Sciences
Talbi, El-Ghazali [Auteur] refId
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
van Woensel, Tom [Auteur]
Department of Industrial Engineering and Innovation Sciences
de Kok, Ton [Auteur]
Department of Industrial Engineering and Innovation Sciences
Journal title :
Computers and Operations Research
Pages :
1165-1175
Publisher :
Elsevier
Publication date :
2013-05
ISSN :
0305-0548
English keyword(s) :
Multi-objective decisions
State-dependent costs
Approximation
Dynamic programming
HAL domain(s) :
Informatique [cs]/Recherche opérationnelle [cs.RO]
English abstract : [en]
In many practical situations, decisions are multi-objective by nature. In this paper, we propose a generic approach to deal with multi-objective scheduling problems (MOSPs). The aim is to determine the set of Pareto solutions ...
Show more >
In many practical situations, decisions are multi-objective by nature. In this paper, we propose a generic approach to deal with multi-objective scheduling problems (MOSPs). The aim is to determine the set of Pareto solutions that represent the interactions between the different objectives. Due to the complexity of MOSPs, an efficient approximation based on dynamic programming is developed. The approximation has a provable worst case performance guarantee. Even though the approximate Pareto set consists of fewer solutions, it represents a good coverage of the true set of Pareto solutions. We consider generic cost parameters that depend on the state of the system. Numerical results are presented for the time-dependent multi-objective knapsack problem, showing the value of the approximation in the special case when the state of the system is expressed in terms of time.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Université de Lille

Mentions légales
Université de Lille © 2017