Bayesian Nonparametric State and Impulsive ...
Type de document :
Communication dans un congrès avec actes
Titre :
Bayesian Nonparametric State and Impulsive Measurement Noise Density Estimation in Nonlinear Dynamic Systems
Auteur(s) :
Jaoua, Nouha [Auteur]
LAGIS-SI
Duflos, Emmanuel [Auteur]
LAGIS-SI
Vanheeghe, Philippe [Auteur]
LAGIS-SI
Septier, Francois [Auteur]
LAGIS-SI
LAGIS-SI
Duflos, Emmanuel [Auteur]

LAGIS-SI
Vanheeghe, Philippe [Auteur]

LAGIS-SI
Septier, Francois [Auteur]
LAGIS-SI
Titre de la manifestation scientifique :
IEEE International Conference on Acoustics, Speech, and Signal Processing
Ville :
Vancouver
Pays :
Canada
Date de début de la manifestation scientifique :
2013-05-26
Date de publication :
2013-05-26
Mot(s)-clé(s) en anglais :
Bayesian nonparametric
Dirichlet Process Mixture
particle filter
impulsive noise
α-stable process
Dirichlet Process Mixture
particle filter
impulsive noise
α-stable process
Discipline(s) HAL :
Sciences de l'ingénieur [physics]/Traitement du signal et de l'image [eess.SP]
Informatique [cs]/Traitement du signal et de l'image [eess.SP]
Informatique [cs]/Traitement du signal et de l'image [eess.SP]
Résumé en anglais : [en]
In this paper, we address the problem of online state and measure- ment noise density estimation in nonlinear dynamic state-space models. We are especially interested in making inference in the presence of impulsive and ...
Lire la suite >In this paper, we address the problem of online state and measure- ment noise density estimation in nonlinear dynamic state-space models. We are especially interested in making inference in the presence of impulsive and multimodal noise. The proposed method relies on the introduction of a flexible Bayesian nonparametric noise model based on Dirichlet Process mixtures. A novel approach based on sequential Monte Carlo methods is proposed to perform the optimal online estimation. Simulation results demonstrate the efficiency and the robustness of this approach.Lire moins >
Lire la suite >In this paper, we address the problem of online state and measure- ment noise density estimation in nonlinear dynamic state-space models. We are especially interested in making inference in the presence of impulsive and multimodal noise. The proposed method relies on the introduction of a flexible Bayesian nonparametric noise model based on Dirichlet Process mixtures. A novel approach based on sequential Monte Carlo methods is proposed to perform the optimal online estimation. Simulation results demonstrate the efficiency and the robustness of this approach.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :