• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Sensor and actuator fault detection and ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Communication dans un congrès avec actes
DOI :
10.1109/MED.2010.5547872
Title :
Sensor and actuator fault detection and isolation using two model based approaches: Application to an autonomous electric vehicle
Author(s) :
Bouibed, Kamel [Auteur]
Aitouche, Abdel [Auteur correspondant]
Systèmes Tolérants aux Fautes [STF]
Bayart Merchez, Mireille [Auteur] refId
Systèmes Tolérants aux Fautes [STF]
Conference title :
Conference on Control & Automation (MED), 2010 18th Mediterranean
City :
Marrakech
Country :
Maroc
Start date of the conference :
2010-06-23
Book title :
Conference on Control & Automation (MED), 2010 18th Mediterranean
Publication date :
2010-06-25
HAL domain(s) :
Sciences de l'ingénieur [physics]/Automatique / Robotique
English abstract : [en]
In this paper, two model based approaches are proposed in order to detect and to isolate sensor and actuator faults on an electric autonomous vehicle. The first one is based on sliding mode observers. The principle is to ...
Show more >
In this paper, two model based approaches are proposed in order to detect and to isolate sensor and actuator faults on an electric autonomous vehicle. The first one is based on sliding mode observers. The principle is to reconstruct the state vector and the outputs of the system by sliding mode observers and to compare the estimated outputs with those measured, the obtained difference is considered as residual. The second approach rests on nonlinear analytical redundancy (NLAR) and consists to eliminate the unknown states and variables in order to obtain relations where all variables are known. The objective of this paper is to show the interest of the two approaches for detecting sensor or actuator faults of autonomous electric vehicle. Simulation results show that the method of NLAR is more adequate to detect actuator faults and the sliding mode observer is better for detecting sensor faults.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Université de Lille

Mentions légales
Université de Lille © 2017