• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Constraint score evaluation for spectral ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Article dans une revue scientifique
DOI :
10.1007/s11063-013-9280-2
Title :
Constraint score evaluation for spectral feature selection
Author(s) :
Kalakech, Mariam [Auteur]
LAGIS-SI
Biela, Philippe [Auteur]
LAGIS-SI
Hamad, Denis [Auteur]
Laboratoire d'Informatique Signal et Image de la Côte d'Opale [LISIC]
Macaire, Ludovic [Auteur] refId
LAGIS-SI
Journal title :
Neural Processing Letters
Pages :
1-24
Publisher :
Springer Verlag
Publication date :
2013-10-01
ISSN :
1370-4621
HAL domain(s) :
Sciences de l'ingénieur [physics]/Traitement du signal et de l'image [eess.SP]
Informatique [cs]/Traitement du signal et de l'image [eess.SP]
English abstract : [en]
Semi-supervised context characterized by the presence of a few pairs of constraints between learning samples is abundant in many real applications. Analysing these instance constraints by recent spectral scores has shown ...
Show more >
Semi-supervised context characterized by the presence of a few pairs of constraints between learning samples is abundant in many real applications. Analysing these instance constraints by recent spectral scores has shown good performances for semi-supervised feature selection. The performance evaluation of these scores is generally based on classification accuracy and is performed in a ground truth context. However, this supervised context used in the evaluation is inconsistent with the semi-supervised context used in the feature selection. In this paper, we propose a semi-supervised performance evaluation procedure, so that both feature selection and clustering take into account the constraints given by the user. In this way, the selection and the evaluation steps are performed in the same context which is close to real life applications. Extensive experiments on benchmark datasets are carried out in the last section. These experiments are performed using a supervised classical evaluation and the semi-supervised proposed one. They demonstrate the effectiveness of feature selection based on constraint analysis that uses both pairwise constraints and the information brought by the unlabeled data.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://api.istex.fr/ark:/67375/VQC-XXB3D4T3-R/fulltext.pdf?sid=hal
  • Open access
  • Access the document
Thumbnail
  • https://api.istex.fr/ark:/67375/VQC-XXB3D4T3-R/fulltext.pdf?sid=hal
  • Open access
  • Access the document
Thumbnail
  • https://api.istex.fr/ark:/67375/VQC-XXB3D4T3-R/fulltext.pdf?sid=hal
  • Open access
  • Access the document
Thumbnail
  • https://api.istex.fr/ark:/67375/VQC-XXB3D4T3-R/fulltext.pdf?sid=hal
  • Open access
  • Access the document
Thumbnail
  • fulltext.pdf
  • Open access
  • Access the document
Université de Lille

Mentions légales
Accessibilité : non conforme
Université de Lille © 2017