On the Impact of a Small Initial Population ...
Type de document :
Communication dans un congrès avec actes
DOI :
Titre :
On the Impact of a Small Initial Population Size in the IPOP Active CMA-ES with Mirrored Mutations on the Noiseless BBOB Testbed
Auteur(s) :
Brockhoff, Dimo [Auteur]
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Auger, Anne [Auteur]
Machine Learning and Optimisation [TAO]
Hansen, Nikolaus [Auteur]
Machine Learning and Optimisation [TAO]
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Auger, Anne [Auteur]
Machine Learning and Optimisation [TAO]
Hansen, Nikolaus [Auteur]
Machine Learning and Optimisation [TAO]
Titre de la manifestation scientifique :
GECCO Companion '12
Ville :
Philadelphia, PA
Pays :
Etats-Unis d'Amérique
Date de début de la manifestation scientifique :
2012-07-07
Date de publication :
2012-07-07
Discipline(s) HAL :
Informatique [cs]/Réseau de neurones [cs.NE]
Résumé en anglais : [en]
Active Covariance Matrix Adaptation and Mirrored Mutations have been independently proposed as improved variants of the well-known optimization algorithm Covariance Matrix Adaptation Evolution Strategy (CMA-ES) for numerical ...
Lire la suite >Active Covariance Matrix Adaptation and Mirrored Mutations have been independently proposed as improved variants of the well-known optimization algorithm Covariance Matrix Adaptation Evolution Strategy (CMA-ES) for numerical optimization. This paper investigates the impact of the algorithm's population size when both active covariance matrix adaptation and mirrored mutation are used in the CMA-ES. To this end, we compare the CMA-ES with standard population size $\lambda$, i.e., $\lambda = 4 + \lfloor 3\log(D) \rfloor$ with a version with half this population size where $D$ is the problem dimension.Lire moins >
Lire la suite >Active Covariance Matrix Adaptation and Mirrored Mutations have been independently proposed as improved variants of the well-known optimization algorithm Covariance Matrix Adaptation Evolution Strategy (CMA-ES) for numerical optimization. This paper investigates the impact of the algorithm's population size when both active covariance matrix adaptation and mirrored mutation are used in the CMA-ES. To this end, we compare the CMA-ES with standard population size $\lambda$, i.e., $\lambda = 4 + \lfloor 3\log(D) \rfloor$ with a version with half this population size where $D$ is the problem dimension.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- https://hal.inria.fr/hal-00746122/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-00746122/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-00746122/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- wk05p17-brockhoff_authorVersion.pdf
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- wk05p17-brockhoff_authorVersion.pdf
- Accès libre
- Accéder au document