SHREC'12 Track: 3D mesh segmentation
Type de document :
Communication dans un congrès avec actes
Titre :
SHREC'12 Track: 3D mesh segmentation
Auteur(s) :
Lavoué, Guillaume [Auteur correspondant]
Geometry Processing and Constrained Optimization [M2DisCo]
Vandeborre, Jean Philippe [Auteur]
Institut TELECOM/TELECOM Lille1
FOX MIIRE [LIFL]
Benhabiles, Halim [Auteur]
Laboratoire Electronique, Informatique et Image [UMR6306] [Le2i]
Daoudi, Mohamed [Auteur]
Institut TELECOM/TELECOM Lille1
FOX MIIRE [LIFL]
Huebner, Kai [Auteur]
Computer Vision & Active Perception lab. [CVAP]
Mortara, Michela [Auteur]
Istituto di Matematica Applicata e Tecnologie Informatiche [IMATI]
Spagnuolo, Michela [Auteur]
Geometry Processing and Constrained Optimization [M2DisCo]
Vandeborre, Jean Philippe [Auteur]

Institut TELECOM/TELECOM Lille1
FOX MIIRE [LIFL]
Benhabiles, Halim [Auteur]

Laboratoire Electronique, Informatique et Image [UMR6306] [Le2i]
Daoudi, Mohamed [Auteur]

Institut TELECOM/TELECOM Lille1
FOX MIIRE [LIFL]
Huebner, Kai [Auteur]
Computer Vision & Active Perception lab. [CVAP]
Mortara, Michela [Auteur]
Istituto di Matematica Applicata e Tecnologie Informatiche [IMATI]
Spagnuolo, Michela [Auteur]
Titre de la manifestation scientifique :
Eurographics 2012 Workshop on 3D Object Retrieval
Ville :
Cagliari
Pays :
Italie
Date de début de la manifestation scientifique :
2012-05-13
Date de publication :
2012-05-13
Mot(s)-clé(s) en anglais :
3D-mesh
segmentation
benchmark
contest
SHREC
segmentation
benchmark
contest
SHREC
Discipline(s) HAL :
Informatique [cs]/Vision par ordinateur et reconnaissance de formes [cs.CV]
Résumé en anglais : [en]
3D mesh segmentation is a fundamental process in many applications such as shape retrieval, compression, deformation, etc. The objective of this track is to evaluate the performance of recent segmentation methods using a ...
Lire la suite >3D mesh segmentation is a fundamental process in many applications such as shape retrieval, compression, deformation, etc. The objective of this track is to evaluate the performance of recent segmentation methods using a ground-truth corpus and an accurate similarity metric. The ground-truth corpus is composed of 28 watertight models, grouped in five classes (animal, furniture, hand, human and bust) and each associated with 4 ground-truth segmentations done by human subjects. 3 research groups have participated to this track, the accuracy of their segmentation algorithms have been evaluated and compared with 4 other state-of-the-art methods.Lire moins >
Lire la suite >3D mesh segmentation is a fundamental process in many applications such as shape retrieval, compression, deformation, etc. The objective of this track is to evaluate the performance of recent segmentation methods using a ground-truth corpus and an accurate similarity metric. The ground-truth corpus is composed of 28 watertight models, grouped in five classes (animal, furniture, hand, human and bust) and each associated with 4 ground-truth segmentations done by human subjects. 3 research groups have participated to this track, the accuracy of their segmentation algorithms have been evaluated and compared with 4 other state-of-the-art methods.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- https://hal.archives-ouvertes.fr/hal-00725272/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-00725272/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-00725272/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- Shrec12Segmentation.pdf
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- Shrec12Segmentation.pdf
- Accès libre
- Accéder au document