A Bayesian 3-D Search Engine Using Adaptive ...
Type de document :
Compte-rendu et recension critique d'ouvrage
DOI :
Titre :
A Bayesian 3-D Search Engine Using Adaptive Views Clustering
Auteur(s) :
Filali Ansary, Tarik [Auteur]
Institut TELECOM/TELECOM Lille1
FOX MIIRE [LIFL]
Daoudi, Mohamed [Auteur]
Institut TELECOM/TELECOM Lille1
FOX MIIRE [LIFL]
Vandeborre, Jean Philippe [Auteur correspondant]
Institut TELECOM/TELECOM Lille1
FOX MIIRE [LIFL]
Institut TELECOM/TELECOM Lille1
FOX MIIRE [LIFL]
Daoudi, Mohamed [Auteur]

Institut TELECOM/TELECOM Lille1
FOX MIIRE [LIFL]
Vandeborre, Jean Philippe [Auteur correspondant]

Institut TELECOM/TELECOM Lille1
FOX MIIRE [LIFL]
Titre de la revue :
IEEE Transactions on Multimedia
Pagination :
78-88
Éditeur :
Institute of Electrical and Electronics Engineers
Date de publication :
2007-01
ISSN :
1520-9210
Mot(s)-clé(s) en anglais :
Bayesian approach
clustering
3-D indexing
3-D retrieval
views
clustering
3-D indexing
3-D retrieval
views
Discipline(s) HAL :
Informatique [cs]/Vision par ordinateur et reconnaissance de formes [cs.CV]
Résumé en anglais : [en]
In this paper, we propose a method for three-dimensional (3-D)-model indexing based on two-dimensional (2-D) views, which we call adaptive views clustering (AVC). The goal of this method is to provide an "optimal" selection ...
Lire la suite >In this paper, we propose a method for three-dimensional (3-D)-model indexing based on two-dimensional (2-D) views, which we call adaptive views clustering (AVC). The goal of this method is to provide an "optimal" selection of 2-D views from a 3-D model, and a probabilistic Bayesian method for 3-D-model retrieval from these views. The characteristic view selection algorithm is based on an adaptive clustering algorithm and uses statistical model distribution scores to select the optimal number of views. Starting from the fact that all views do not have equal importance, we also introduce a novel Bayesian approach to improve the retrieval. Finally, we present our results and compare our method to some state-of-the-art 3-D retrieval descriptors on the Princeton 3-D Shape Benchmark database and a 3-D-CAD-models database supplied by the car manufacturer Renault.Lire moins >
Lire la suite >In this paper, we propose a method for three-dimensional (3-D)-model indexing based on two-dimensional (2-D) views, which we call adaptive views clustering (AVC). The goal of this method is to provide an "optimal" selection of 2-D views from a 3-D model, and a probabilistic Bayesian method for 3-D-model retrieval from these views. The characteristic view selection algorithm is based on an adaptive clustering algorithm and uses statistical model distribution scores to select the optimal number of views. Starting from the fact that all views do not have equal importance, we also introduce a novel Bayesian approach to improve the retrieval. Finally, we present our results and compare our method to some state-of-the-art 3-D retrieval descriptors on the Princeton 3-D Shape Benchmark database and a 3-D-CAD-models database supplied by the car manufacturer Renault.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Collections :
Source :
Fichiers
- https://hal.archives-ouvertes.fr/hal-00666134/document
- Accès libre
- Accéder au document
- http://hal.inria.fr/docs/00/66/61/34/PDF/filaliansaryTMM2007.pdf
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-00666134/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-00666134/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- filaliansaryTMM2007.pdf
- Accès libre
- Accéder au document
- filaliansaryTMM2007.pdf
- Accès libre
- Accéder au document