• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Bayesian 3-D Search Engine Using Adaptive ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Article dans une revue scientifique
DOI :
10.1109/TMM.2006.886359
Title :
A Bayesian 3-D Search Engine Using Adaptive Views Clustering
Author(s) :
Filali Ansary, Tarik [Auteur]
FOX MIIRE [LIFL]
Daoudi, Mohamed [Auteur]
FOX MIIRE [LIFL]
Vandeborre, Jean-Philippe [Auteur correspondant] refId
FOX MIIRE [LIFL]
Journal title :
IEEE Transactions on Multimedia
Pages :
78-88
Publisher :
Institute of Electrical and Electronics Engineers
Publication date :
2007-01
ISSN :
1520-9210
English keyword(s) :
Bayesian approach
clustering
3-D indexing
3-D retrieval
views
HAL domain(s) :
Informatique [cs]/Vision par ordinateur et reconnaissance de formes [cs.CV]
English abstract : [en]
In this paper, we propose a method for three-dimensional (3-D)-model indexing based on two-dimensional (2-D) views, which we call adaptive views clustering (AVC). The goal of this method is to provide an "optimal" selection ...
Show more >
In this paper, we propose a method for three-dimensional (3-D)-model indexing based on two-dimensional (2-D) views, which we call adaptive views clustering (AVC). The goal of this method is to provide an "optimal" selection of 2-D views from a 3-D model, and a probabilistic Bayesian method for 3-D-model retrieval from these views. The characteristic view selection algorithm is based on an adaptive clustering algorithm and uses statistical model distribution scores to select the optimal number of views. Starting from the fact that all views do not have equal importance, we also introduce a novel Bayesian approach to improve the retrieval. Finally, we present our results and compare our method to some state-of-the-art 3-D retrieval descriptors on the Princeton 3-D Shape Benchmark database and a 3-D-CAD-models database supplied by the car manufacturer Renault.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-00666134/document
  • Open access
  • Access the document
Thumbnail
  • http://hal.inria.fr/docs/00/66/61/34/PDF/filaliansaryTMM2007.pdf
  • Open access
  • Access the document
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-00666134/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-00666134/document
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017