GPU-based Multi-start Local Search Algorithms
Type de document :
Communication dans un congrès avec actes
Titre :
GPU-based Multi-start Local Search Algorithms
Auteur(s) :
Luong, Thé Van [Auteur]
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Melab, Nouredine [Auteur]
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Talbi, El-Ghazali [Auteur]
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Melab, Nouredine [Auteur]
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Talbi, El-Ghazali [Auteur]

Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Éditeur(s) ou directeur(s) scientifique(s) :
Carlos A. Coello Coello
Titre de la manifestation scientifique :
Learning and Intelligent Optimization
Ville :
Rome
Pays :
Italie
Date de début de la manifestation scientifique :
2011
Titre de la revue :
Lecture Notes in Computer Science
Éditeur :
Springer
Date de publication :
2011
Discipline(s) HAL :
Sciences cognitives/Informatique
Résumé en anglais : [en]
In practice, combinatorial optimization problems are complex and computationally time-intensive. Local search algorithms are powerful heuristics which allow to significantly reduce the computation time cost of the solution ...
Lire la suite >In practice, combinatorial optimization problems are complex and computationally time-intensive. Local search algorithms are powerful heuristics which allow to significantly reduce the computation time cost of the solution exploration space. In these algorithms, the multi-start model may improve the quality and the robustness of the obtained solutions. However, solving large size and time-intensive optimization problems with this model requires a large amount of computational resources. GPU computing is recently revealed as a powerful way to harness these resources. In this paper, the focus is on the multi-start model for local search algorithms on GPU. We address its re-design, implementation and associated issues related to the GPU execution context. The preliminary results demonstrate the effectiveness of the proposed approaches and their capabilities to exploit the GPU architecture.Lire moins >
Lire la suite >In practice, combinatorial optimization problems are complex and computationally time-intensive. Local search algorithms are powerful heuristics which allow to significantly reduce the computation time cost of the solution exploration space. In these algorithms, the multi-start model may improve the quality and the robustness of the obtained solutions. However, solving large size and time-intensive optimization problems with this model requires a large amount of computational resources. GPU computing is recently revealed as a powerful way to harness these resources. In this paper, the focus is on the multi-start model for local search algorithms on GPU. We address its re-design, implementation and associated issues related to the GPU execution context. The preliminary results demonstrate the effectiveness of the proposed approaches and their capabilities to exploit the GPU architecture.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- https://hal.inria.fr/inria-00638813/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/inria-00638813/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- LION5.pdf
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- LION5.pdf
- Accès libre
- Accéder au document