• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Neighborhood Structures for GPU-based Local ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Article dans une revue scientifique
DOI :
10.1142/S0129626410000260
Title :
Neighborhood Structures for GPU-based Local Search Algorithms
Author(s) :
Luong, Thé Van [Auteur]
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Melab, Nouredine [Auteur]
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Talbi, El-Ghazali [Auteur] refId
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Journal title :
Parallel Processing Letters
Pages :
307-324
Publisher :
World Scientific Publishing
Publication date :
2010
ISSN :
0129-6264
English keyword(s) :
GPU-based metaheuristics
Parallel local search algorithms on GPU
HAL domain(s) :
Informatique [cs]/Autre [cs.OH]
English abstract : [en]
Local search algorithms are powerful heuristics for solving computationally hard problems in science and industry. In these methods, designing neighborhood operators to explore large promising regions of the search space ...
Show more >
Local search algorithms are powerful heuristics for solving computationally hard problems in science and industry. In these methods, designing neighborhood operators to explore large promising regions of the search space may improve the quality of the obtained solutions at the expense of a high computation process. As a consequence, the use of GPU computing provides an efficient way to speed up the search. However, designing applications on GPU is still complex and many issues have to be faced. We provide a methodology to design and implement different neighborhood structures for LS algorithms on GPU. The work has been evaluated for binary problems and the obtained results are convincing both in terms of efficiency, quality and robustness of the provided solutions at run time.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.inria.fr/inria-00520461/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/inria-00520461/document
  • Open access
  • Access the document
Thumbnail
  • http://hal.inria.fr/docs/00/52/04/61/PDF/PPL.pdf
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017