Multi-sensors data fusion using dynamic ...
Type de document :
Communication dans un congrès avec actes
Titre :
Multi-sensors data fusion using dynamic bayesian network for robotised vehicle geo-localisation
Auteur(s) :
Cappelle, Cindy [Auteur correspondant]
Laboratoire d'Automatique, Génie Informatique et Signal [LAGIS]
El Badaoui El Najjar, Maan [Auteur]
Systèmes Tolérants aux Fautes [STF]
Pomorski, Denis [Auteur]
Systèmes Tolérants aux Fautes [STF]
Charpillet, François [Auteur]
Autonomous intelligent machine [MAIA]
Laboratoire d'Automatique, Génie Informatique et Signal [LAGIS]
El Badaoui El Najjar, Maan [Auteur]

Systèmes Tolérants aux Fautes [STF]
Pomorski, Denis [Auteur]

Systèmes Tolérants aux Fautes [STF]
Charpillet, François [Auteur]
Autonomous intelligent machine [MAIA]
Titre de la manifestation scientifique :
11th International Conference on Information Fusion
Ville :
Cologne
Pays :
Allemagne
Date de début de la manifestation scientifique :
2008-07-01
Éditeur :
IEEE
Date de publication :
2008
Mot(s)-clé(s) en anglais :
Geo-localisation
Virtual 3D City Model
3D Geographical Information System (3D-GIS)
Global Positioning System (GPS)
Vision
Dynamic Bayesian Network (DBN)
2D/3D Matching
Virtual 3D City Model
3D Geographical Information System (3D-GIS)
Global Positioning System (GPS)
Vision
Dynamic Bayesian Network (DBN)
2D/3D Matching
Discipline(s) HAL :
Informatique [cs]/Robotique [cs.RO]
Informatique [cs]/Automatique
Informatique [cs]/Automatique
Résumé en anglais : [en]
This paper presents an outdoor geolocalisation method, which integrates several information sources: measurements from GPS, incremental encoders and gyroscope, 2D images provided by an on-board camera and a virtual 3D city ...
Lire la suite >This paper presents an outdoor geolocalisation method, which integrates several information sources: measurements from GPS, incremental encoders and gyroscope, 2D images provided by an on-board camera and a virtual 3D city model. A 3D cartographical observation of the vehicle pose is constructed. This observation is based on the matching between the acquired 2D images and the virtual 3D city model. This estimation is especially useful during long GPS outages to correct the drift of the only dead-reckoning localisation or when the GPS quality is deteriorated due to multi-path, satellites masks and so on particularly in urban environments. Moreover, the various sensors measurements are fused in Dynamic Bayesian Network formalism in order to provide a continuous estimation of the pose.Lire moins >
Lire la suite >This paper presents an outdoor geolocalisation method, which integrates several information sources: measurements from GPS, incremental encoders and gyroscope, 2D images provided by an on-board camera and a virtual 3D city model. A 3D cartographical observation of the vehicle pose is constructed. This observation is based on the matching between the acquired 2D images and the virtual 3D city model. This estimation is especially useful during long GPS outages to correct the drift of the only dead-reckoning localisation or when the GPS quality is deteriorated due to multi-path, satellites masks and so on particularly in urban environments. Moreover, the various sensors measurements are fused in Dynamic Bayesian Network formalism in order to provide a continuous estimation of the pose.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :