Covariance-adapting algorithm for semi-bandits ...
Type de document :
Communication dans un congrès avec actes
Titre :
Covariance-adapting algorithm for semi-bandits with application to sparse outcomes
Auteur(s) :
Perrault, Pierre [Auteur]
Scool [Scool]
Sequential Learning [SEQUEL]
Ecole Normale Supérieure Paris-Saclay [ENS Paris Saclay]
Perchet, Vianney [Auteur]
Ecole Nationale de la Statistique et de l'Analyse Economique [ENSAE]
Valko, Michal [Auteur]
DeepMind [Paris]
Scool [Scool]
Sequential Learning [SEQUEL]
Ecole Normale Supérieure Paris-Saclay [ENS Paris Saclay]
Perchet, Vianney [Auteur]
Ecole Nationale de la Statistique et de l'Analyse Economique [ENSAE]
Valko, Michal [Auteur]

DeepMind [Paris]
Titre de la manifestation scientifique :
Conference on Learning Theory
Ville :
Graz
Pays :
Autriche
Date de début de la manifestation scientifique :
2020
Date de publication :
2020
Mot(s)-clé(s) en anglais :
combinatorial stochastic semi-bandits
covariance
confidence ellipsoid
sparsity
covariance
confidence ellipsoid
sparsity
Discipline(s) HAL :
Mathématiques [math]
Mathématiques [math]/Statistiques [math.ST]
Informatique [cs]
Informatique [cs]/Apprentissage [cs.LG]
Mathématiques [math]/Statistiques [math.ST]
Informatique [cs]
Informatique [cs]/Apprentissage [cs.LG]
Résumé en anglais : [en]
We investigate stochastic combinatorial semi-bandits, where the entire joint distribution of outcomes impacts the complexity of the problem instance (unlike in the standard bandits). Typical distributions considered depend ...
Lire la suite >We investigate stochastic combinatorial semi-bandits, where the entire joint distribution of outcomes impacts the complexity of the problem instance (unlike in the standard bandits). Typical distributions considered depend on specific parameter values, whose prior knowledge is required in theory but quite difficult to estimate in practice; an example is the commonly assumed sub-Gaussian family. We alleviate this issue by instead considering a new general family of sub-exponential distributions, which contains bounded and Gaussian ones. We prove a new lower bound on the regret on this family, that is parameterized by the unknown covariance matrix, a tighter quantity than the sub-Gaussian matrix. We then construct an algorithm that uses covariance estimates, and provide a tight asymptotic analysis of the regret. Finally, we apply and extend our results to the family of sparse outcomes, which has applications in many recommender systems.Lire moins >
Lire la suite >We investigate stochastic combinatorial semi-bandits, where the entire joint distribution of outcomes impacts the complexity of the problem instance (unlike in the standard bandits). Typical distributions considered depend on specific parameter values, whose prior knowledge is required in theory but quite difficult to estimate in practice; an example is the commonly assumed sub-Gaussian family. We alleviate this issue by instead considering a new general family of sub-exponential distributions, which contains bounded and Gaussian ones. We prove a new lower bound on the regret on this family, that is parameterized by the unknown covariance matrix, a tighter quantity than the sub-Gaussian matrix. We then construct an algorithm that uses covariance estimates, and provide a tight asymptotic analysis of the regret. Finally, we apply and extend our results to the family of sparse outcomes, which has applications in many recommender systems.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- https://hal.archives-ouvertes.fr/hal-02876102/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-02876102/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-02876102/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- colt.pdf
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- colt.pdf
- Accès libre
- Accéder au document